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Abstract. We revisit Janin and Walukiewicz’s classic result on the expressive com-

pleteness of the modal mu-calculus w.r.t. MSO, when transition systems are equipped

with a binary relation over paths. We obtain two natural extensions of MSO and the

mu-calculus: MSO with path relation and the jumping mu-calculus. While “bounded-

memory” binary relations bring about no extra expressivity to either of the two logics,

“unbounded-memory” binary relations make the bisimulation-invariant fragment of

MSO with path relation more expressive than the jumping mu-calculus: the existence

of winning strategies in games with imperfect-information inhabits the gap.

1 Introduction

Monadic second-order logic (MSO) is a standard for comparing expressiveness of
other logics of programs. Ground-breaking expressiveness results on MSO were
obtained first on “freely-generated” structures (words, trees, tree-like structures,
etc.) [26, 29], then on “non-free” structures like grids [18] or infinite graphs gen-
erated by regularity-preserving transformations [10, 8]. Some attention has also
been brought to the study of enrichments of MSO with unary predicate symbols
or with the “equal level” binary predicate (MSOeql) [11, 25].

Many of these expressiveness results relate MSO with automata and modal
logics, among which Janin and Walukiewicz’s seminal result [17] showing that
the bisimulation-invariant fragment of MSO interpreted over transition systems
is captured by the µ-calculus. Notable exceptions to the classical trilogy between
MSO, modal logics and automata are MSO on infinite partial orders (see [23] for
partial results) and MSOeql(partial results can be found in [25]).

On the other hand, more recently there has been an increased interest in
the expressiveness and decidability of logics defined on structures in which two
“orthogonal” relations are considered: the so-called temporal epistemic (multi-
agent) logics [12], which combine time-passage relations and epistemic relations
on the histories of the system [12, 15]. A natural question that arises is whether
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there exists a natural extension of MSO, of the µ-calculus, and of tree automata
for the temporal epistemic framework, and how would they compare?

Note that appropriate extensions of MSO, of the µ-calculus and of tree au-
tomata would rely on two sorts of binary relations: those related to dynamic
behaviour and those related to epistemic features. While the temporal part of
these logics naturally refers to a tree-like structure, the epistemic part requires,
in order to model e.g. powerful agents with “perfect recall”, to consider binary
relations defined on histories. Such models neither are tree-like structures, nor
grid-like structures, nor graphs within the Caucal hierarchy. The only proposals
in this direction that we know about are [27, 24, 1] and [19]. [27] mentions an
encoding of LTL with knowledge into Chain Logic with equal-level predicate,
a fragment of MSOeql. [24] introduces the epistemic µ-calculus and studies its
model-checking problem. [1] studies temporal logics over tree models with “jump-
edges” which capture observational indistinguishability. Each one considers only
one particular relation on histories, all three akin to synchronous perfect recall.
[19] proposes a generalization of tree automata, called jumping tree automata,
applying them to the study of temporal epistemic logics.

In this paper, we propose natural extensions of MSO and the µ-calculus, re-
spectively called MSO with path relation (MSOÀ) and the jumping µ-calculus
(LÀµ ). MSOÀ is MSO with an additional binary predicate, À, interpreted “trans-
versely” on the tree structure, according to the path relation. LÀµ is a general-
ization of the epistemic µ-calculus defined in [24]: it features a jumping modality
whose semantics relies on the path relation, generalizing the knowledge operator
K. The path relations that we consider are arbitrary and thus cover all variants
of indistinguishability relations of, e.g. [16], as well as settings not particularly
related to any epistemic interpretation [13]. We investigate whether LÀµ is expres-
sive complete with regards to the bisimulation-invariant fragment of MSOÀ. For
the class of recognizable path relations (finite memory), we observe (Theorem 1)
that they add no expressivity w.r.t. the classical case hence the expressive com-
pleteness holds. We show however that the case of regular path relations breaks
this completeness: the class of reachability games with imperfect information
and synchronous perfect recall [5] where the first player wins cannot be defined
in the jumping µ-calculus, while being closed under bisimulation and definable in
our extension of MSO (Theorem 2). As an intermediate result, we show that the
jumping tree automata defined in [19] are equivalent to the jumping µ-calculus.

The paper runs as follows: in Section 2, we develop the framework of our
study on transition systems. We introduce in Section 3 the two extensions of
MSO and the µ-calculus, and state our results on expressive completeness (The-
orem 1 and 2). In Section 4 we establish Theorem 1 and prove that jumping
automata are equivalent to the jumping µ-calculus, thanks to which we establish
succinctness and complexity results on the jumping µ-calculus with recognizable
path relation. In Section 5 we establish our main result (Theorem 2) by proving
that winning in reachability games with imperfect information and synchronous
perfect recall is not definable in the jumping µ-calculus, unless the winning con-



ditions are observable (Theorem 3). We conclude, comment on the impacts of
our results, and give some perspectives in Section 6.

2 Preliminary notions

We first fix a few basic notations. Given two words w and w′ over some alphabet
Σ, we write w � w′ if w is a prefix of w′; if w = a0a1 . . . ∈ Σω is an infinite
word we let, for each i ≥ 0, w[i] := ai and w[0, i] := a0a1 . . . ai. For a finite
word w = a0 . . . an−1 ∈ Σ∗, its length is |w| := n. Also, given a binary relation
R ⊆ A × B for every a ∈ A, we let R(a) := {b | (a, b) ∈ R}. In the rest of
the paper, we fix AP = {p, p′, . . .} a countable set of atomic propositions and
Act = {a, a′, . . .} a countable set of actions.

Definition 1. A transition system (over AP and Act) is a structure S =
(S, sι, {aS}a∈Act, {pS}p∈AP), where S is a countable set of states, sι is an initial
state, each aS is a binary relation over S and each pS is a subset of S.

The logics that we aim at are concerned with paths4 in transition systems,
that is, on their tree unfoldings. To ease the presentation, our trees have at most
countable branching degree, but, unless otherwise stated, our results still hold
for arbitrary degree. A tree is a nonempty, prefix-closed set τ ⊆ N∗. An element
x ∈ τ is a node, and the empty word ε is the root of the tree. If x · i ∈ τ ,
x · i is a child of x. A node with no child is a leaf. A branch is a sequence
of nodes in τ (either finite or infinite) in which each node but the first one
is a child of the previous one; a branch is maximal if it is infinite or it ends
up in a leaf. We write x � y if y can be found on some branch that starts
in x, and we let [τ ]x = {y | x � y} denote the subtree of τ rooted in x. A
marked tree (over AP and Act) is a pair t = (τ,m), where τ is a tree and
m : τ → (Act× 2AP) is a marking of the nodes, where m(x) = (a, `) means that
x was reached through action a and ` is the set of atomic propositions that hold
in x; we may use notation a x and ` x for a and ` when m(x) = (a, `). Node y
is an a-child of a node x if y is a child of x and ay = a. The word of a node
x is w(x) := m(ε)m(x1) . . .m(xn), where ε x1 . . . xn(= x) is the (unique) branch
from the root to x. For a finite subset AP ⊂ AP, an AP -tree is a labeled tree
t = (τ,m) such that ` x ⊆ AP , for every node x ∈ t (i.e. x ∈ τ).

Definition 2. Let S = (S, sι, {aS}a∈Act, {pS}p∈AP) be a transition system. The
unfolding tS of S is the marked tree (τ,m) with least tree τ such that: ε is
associated 5 to sι and ` ε = {p | sι ∈ pS}, and for each node x ∈ τ associated
to state s, if 〈s −→ai si〉i∈I is an enumeration of the outgoing transitions from s
(with I ⊆ N) , then for each i ∈ I we have x · i ∈ τ , x · i is associated to si and
m(x · i) = (ai, {p ∈ AP | si ∈ pS}).

4 i.e. finite sequences of states and actions that start in the initial state and follow the
binary relations

5 The notion of “associated state” is only used to define unfoldings and is left informal.



Because in the following only actions and atomic propositions matter, the
ordering of children nodes in trees is irrelevant, and the unfolding tS is therefore
uniquely defined up to isomorphism.

Definition 3. We call path relation a binary relation over (Act× 2AP)∗.

A path relation links finite paths of transition systems over AP and Act. It
also induces a binary relation between nodes of marked trees (over AP and Act)
in a natural way by relating nodes x and y whenever their words w(x) and w(y)
are related. We use notation À for path relations.

Finally, we recall the classic notion of bisimulation [20].

Definition 4. A bisimulation between transition systems S and S ′ is a binary
relation Z ⊆ S × S′ such that, for all (s, s′) ∈ Z, for all p ∈ AP and a ∈ Act:

1. s ∈ pS iff s′ ∈ pS′ ;
2. for all r ∈ aS(s), there is r′ ∈ aS′(s′) such that (r, r′) ∈ Z;
3. and vice-versa.

We write S - S ′ whenever there is a bisimulation Z between S and S ′ such
that (sι, s

′
ι) ∈ Z. A class C of transition systems is closed under bisimulation, or

bisimulation closed if S ∈ C and S - S ′ imply S ′ ∈ C, for all S and S ′.

3 Expressive Completeness Issues

We fix a countable set of second order variables Var = {X,Y, . . .}. Given a
marked tree t = (τ,m), a valuation is a mapping V : Var → 2τ . For X ∈ Var
and T ⊆ τ , we let V [T/X] be the valuation that maps X to T , and which
coincides with V on all other variables.

Monadic second order logic with path relation (MSOÀ) is an extension of MSO
interpreted over transition systems with a path relation. Its syntax is as follows:

ψ ::= sr(X) | p(X) | succ(X,Y ) | X ⊆ Y | ¬ψ | ψ ∨ ψ′ | ∃X.ψ(X) | XÀY

where p ∈ AP and X,Y ∈ Var.
An MSOÀ formula ψ is interpreted over a marked tree t = (τ,m) with a

valuation V and a fixed path relation À; the fact that t with valuation V satisfies
ψ is written t, V |=À ψ, defined inductively as follows:

t, V |=À sr(X) if V (X) = {ε}
t, V |=À p(X) if for all x ∈ V (X), p ∈ ` x
t, V |=À succ(X,Y ) if V (X) = {x}, V (Y ) = {y}, and y is a child of x
t, V |=À X ⊆ Y if V (X) ⊆ V (Y )
t, V |=À ¬ψ if t, V 6|=À ψ and t, V |=À ψ ∨ ψ′ if t, V |=À ψ or t, V |=À ψ′

t, V |=À ∃X.ψ(X) if there is T ⊆ t s.t. t, V [T/X] |=À ψ(X)
t, V |=À XÀY if V (X) = {x}, V (Y ) = {y}, and xÀy

If ψ ∈ MSOÀ has no free variable, we simply write t |=À ψ, and S |=À ψ whenever
tS |=À ψ, for any transition system S. Let L(ψ,À) := {S | S |=À ψ}.



The jumping µ-calculus. The syntax of the À-jumping µ-calculus LÀµ is:

ϕ ::= X | p | ¬ϕ | ϕ ∨ ϕ | a ϕ | Àϕ | µX.ϕ(X)

where X ∈ Var, p ∈ AP, a ∈ Act, and in the last rule, X appears only under
an even number of negations (i.e. positively) in ϕ(X). We classically define the
dual operators ∧, a , À and ν, e.g. a ϕ := ¬ a ¬ϕ, and νX.ϕ := ¬µX.¬ϕ.

Given a path relation À, formulas of LÀµ are interpreted over a marked tree

with a valuation V : Var→ 2τ . We inductively define JϕKt,VÀ ⊆ τ with t = (τ,m):

JXKt,VÀ = V (X) JpKt,VÀ = {x ∈ t | p ∈ ` x} J¬ϕKt,VÀ = t \ JϕKt,VÀ
Jϕ ∨ ϕ′Kt,VÀ = JϕKt,VÀ ∪ Jϕ′Kt,VÀ J a ϕKt,VÀ = {x ∈ t | x has an a-child in JϕKt,VÀ }
JÀϕKt,VÀ = {x ∈ t | there exists y ∈ JϕKt,VÀ such that xÀy}

JµX.ϕ(X)Kt,VÀ =
⋂
{T ⊆ t | Jϕ(X)Kt,V [T/X]

À ⊆ T}

Note that, for each formula µX.ϕ(X), function T 7→ Jϕ(X)Kt,V [T/X]
À is mono-

tone, and hence has a least fixpoint, namely JµX.ϕ(X)Kt,VÀ . If ϕ ∈ LÀµ has no free
variables, we write t |=À ϕ whenever ε ∈ JϕKtÀ, and S |=À ϕ whenever tS |=À ϕ,
for any transition system S. We let L(ϕ,À) := {S | S |=À ϕ}.

Expressive Completeness. For a logic L, a class C of transition systems is L-
definable if there is a formula of L whose set of models is exactly C.

Proposition 1. For every path relation À, every LÀµ -definable class is closed
under bisimulation.

This result follows from Lemma 1 below.
Let À be a path relation. Note that a marked tree t can be turned into

a transition system tÀ over AP and Act′ := Act ∪ {aÀ}, where aÀ is a fresh
action symbol, by letting y ∈ aÀ tÀ(x) whenever xÀy. The following lemma states
that if two transition systems are bisimilar (w.r.t. the transition relations only),
then their unfoldings enriched with a path relation are bisimilar w.r.t. both the
transition relations and the path relation.

Lemma 1. Let S and S ′ be two transition systems, and let À be a path relation.
If S - S ′, then tÀS - tÀS′ .

Proposition 2. Every LÀµ -definable class is MSOÀ-definable.

Proposition 2 can easily be established with a straightforward extension of the
effective translation of µ-calculus formulas into MSO given, e.g. in [14, Ch14].

We now engage our main concern, the expressive completeness of LÀµ with
respect to MSOÀ. As in [17], due to Proposition 1, this question can only be
addressed for bisimulation-closed classes of transition systems. We thus seek
properties on the path relation À so that LÀµ is expressive complete with respect
to MSOÀ, in the following sense:



Definition 5 (Expressive completeness). LÀµ is expressive complete with re-
spect to MSOÀ if every bisimulation-closed class of transition systems that is
MSOÀ-definable is also LÀµ -definable.

Note that the results in [17] do not adapt to MSOÀ since unfoldings of tran-
sition systems with a path relation are not tree-like structures.

We briefly recall the notions of recognizable, regular and rational relations,
and we refer to [3] for details. Let Σ be a finite alphabet. A binary relation over
Σ∗ is rational if there is a transducer (i.e. a finite-state two-tape automaton)
that accepts precisely the pairs of words of the relation. A binary relation (over
Σ∗) is regular if it is accepted by a synchronous transducer6. The epistemic
relation of an agent with asynchronous perfect recall [22] is rational whereas the
epistemic relation of an agent with synchronous perfect recall [4, 5] is regular.
A binary relation is recognizable if there is a finite-state word automaton over
Σ ∪ {#} that accepts words of the form w#w′, whenever w and w′ are related.
The epistemic relation of a “bounded-memory” agent is recognizable. We say
that a path relationÀ (over (Act×2AP)∗) is rational (resp. regular, recognizable)
if there are finite subsets A ⊂ Act and AP ⊂ AP such that À is equal to some
rational (resp. regular, recognizable) relation over (A × 2AP )∗. Finally, recall
that recognizable relations are strictly contained in regular relations, and so are
regular relations in rational relations.

Theorem 1. For any recognizable path relation, LÀµ is expressive complete with
respect to MSOÀ.

Theorem 2. There are regular (hence rational) binary relations for which LÀµ
is not expressive complete with respect to MSOÀ.

4 Tree automata for the jumping µ-calculus

We prove that jumping tree automata (JTA), introduced in [19], are equivalent to
the jumping µ-calculus, which entails complexity and succinctness results for LÀµ
with recognizable path relation, and we prove Theorem 1. We assume familiarity
with two-player turn-based games.

For a set X, B+(X) (with typical elements α, β . . .) is the set of formulas
built with elements of X as atomic propositions using only connectives ∨ and ∧,
and with > ∈ B+(X). Let Dir = { a | a ∈ Act} ∪ { a | a ∈ Act} ∪ {À , À} be the
set of automaton directions.

Definition 6. A jumping tree automaton (JTA) over AP is a structure A =
(AP,Q, qι, δ, C) where AP ⊂ AP is a finite set of atomic propositions, Q is a
finite set of states, qι ∈ Q is an initial state, δ : Q × 2AP → B+(Dir × Q) is a
transition function, and C : Q→ N is a colouring function.

6 i.e. it progresses at the same pace on each tape.



JTAs resemble alternating tree automata [14, Ch. 9]. Action directions (i.e.
a and a ) are meant to go down the input tree, whereas the new jump directions
À and À rely on an a priori given path relation. A JTA A with a path relation
À is written (A,À). Acceptance is defined on a two-player parity game between
Eve and Adam. Let t = (τ,m) be an AP -tree, and let A = (AP,Q, qι, δ, C).
We define the parity game GtA,À = (V, vι, E, VE , VA, C

′) whose set of positions is
V = τ × Q × B+(Dir × Q), whose initial position is vι = (ε, qι, δ(qι, `

ε)), and
where a position (x, q, α) belongs to Eve iff α is of the form α1 ∨ α2, [ a , q′], or
[À , q′]. The possible moves in GtA,À are the following:

(x, q, α1 † α2)→ (x, q, αi) where † ∈ {∨,∧} and i ∈ {1, 2}
(x, q, [ a , q′])→ (y, q′, δ(q′, ` y)) where a ∈ { a , a } and y is an a-child of x
(x, q, [À, q′])→ (y, q′, δ(q′, ` y)) where À ∈ {À , À} and xÀy

Deadlock positions are winning for Eve if of the form (x, q,>), (x, q, [ a , q′])
or (x, q, [À, q′]), and winning for Adam otherwise. The colouring function C ′

of GtA,À is inherited from the one of A by letting C ′(x, q, α) = C(q). We let
L(A,À) = {S | Eve has a winning strategy in GtSA,À}.

Proposition 3.

(a) For every formula ϕ ∈ LÀµ , there is a JTA Aϕ such that, for every path
relation À, L(ϕ,À) = L(Aϕ,À),

(b) for every JTA A, there is an LÀµ -formula ϕA such that, for every path relation
À, L(A,À) = L(ϕA,À).

Moreover, the translations are effective and linear.

When restricting to recognizable path relations, the folklore fact that recog-
nizable relations are MSO-definable gives the following.

Proposition 4. MSOÀ with recognizable path relation is not more expressive
than MSO.

Theorem 1 is obtained from Proposition 2, Proposition 4 and the expres-
sive completeness of the µ-calculus w.r.t. MSO. This collapse of the jumping
µ-calculus down to the µ-calculus uses transformations that do not provide ac-
curate complexity bounds regarding the jumping µ-calculus. However, by Propo-
sition 3 and the relationship between two-way alternating automata and classic
tree automata [28] we get:

Proposition 5. The satisfiability problem for the jumping µ-calculus with rec-
ognizable path relation over transition systems with bounded branching degree is
Exptime-complete.

Proposition 6. For a fixed recognizable path relation, the jumping µ-calculus
with path relation over transition systems with bounded branching degree is at
most exponentially more succinct than the µ-calculus.



5 Games and the jumping µ-calculus

We focus on the property stating the existence of a winning strategy in two-
player turned-based reachability games with imperfect information. This prop-
erty gives us Theorem 2, for being bisimilar-invariant, expressible in MSOÀ, but
not expressible in LÀµ (Theorem 4).

Two-player games with imperfect information [2, 9]. The players are Eve i and
Adam i. Eve i partially observes the positions, while Adam i has perfect infor-
mation. Let Obs = {o, o′, . . .} be a countable set of observations. An imperfect-

information game arena is a tuple Gi = (V, vι, {aG
i}a∈Act, {oG

i}o∈Obs), where

V is a set of positions, vι ∈ V is an initial position, each aG
i

is a binary relation
over V and each oG

i

is a subset of V such that {oGi}o∈Obs forms a partition

of V . An action a ∈ Act is available in v ∈ V if aG
i

(v) 6= ∅. We assume that
some action is available in every position, and that two positions with the same
observation share the same available actions. For v ∈ V , write ov the unique
observation such that v ∈ ov.

Players take turns, starting with Eve i. In current position v, Eve i chooses
an available action a and Adam i chooses a new position v′ ∈ aG

i

(v). A play
(resp. partial play) is an infinite (resp. finite) sequence π = v0a1v1a2 . . . (resp.

ρ = v0a1v1 . . . anvn) such that v0 = vι and, for all i, vi+1 ∈ aG
i

i+1(vi). In the

synchronous perfect recall setting [5], Eve i remembers the whole sequence of ob-
servations that she receives, and her actions. The indistinguishability equivalence
over partial plays is thus defined by: for ρ = v0a1 . . . anvn and ρ′ = v′0a

′
1 . . . a

′
nv
′
n,

we let ρ ∼ ρ′ whenever, for all 1 ≤ i ≤ n, ovi = ov′i and ai = a′i.

Remark 1. Here, Eve remembers the sequence of actions. We point out that if
she does not, then Theorem 3 below does not hold.

A (uniform) strategy for Eve is a partial function σ : {vι}(Act · V )∗ → Act
such that for two partial plays ρ and ρ′, if ρ ∼ ρ′, then σ(ρ) = σ(ρ′). We say that a
play π = v0a1v1 . . . follows a strategy σ if for all i ≥ 0, ai+1 = σ(v0a1v1 . . . aivi).

A (reachability) game with imperfect information Gi is an imperfect-information

arena Gi = (V, vι, {aG
i}a∈Act, {oG

i}o∈Obs) together with a reachability winning
condition F ⊆ V . A strategy for Eve i is winning if every play that follows it visits
F . F is observable if for all positions v and v′, ov = ov′ implies (v ∈ F ⇔ v′ ∈ F ).

Note that a game with imperfect information is a transition system over
AP = Obs∪{F} and Act. Note also that the relation ∼ on partial plays induces
a path relation, that we shall also write ∼.

Consider the class R(A,O) of reachability games with imperfect information
where actions range over A ⊆ Act and observations range over O ⊆ Obs. To
address logical definability, we restrict to games where A and O are finite sets.
Also, because we address µ-calculus definability, we close by bisimulation, so
that from now on a game is a transition system whose subsystem connected to
the initial position is a game as defined above.



Notice that the subclass R(A,O) where Eve i wins7 is bisimulation closed
since, according to [5], for any two imperfect-information reachability games Gi
and Gi′, if Gi - Gi′, then Eve i wins in Gi if, and only if, she wins in Gi′.

Theorem 3. The subclass of R(A,O) of games with observable winning condi-
tion where Eve i wins is definable in L∼µ , namely by µX.(F ∨

∨
a∈A ∼ aX).

Actually, a result similar to Theorem 3 can be established for parity conditions.

Theorem 4. The subclass of R(A,O) where Eve i wins is not L∼µ -definable.

Theorem 4 entails Theorem 2 since the subclass ofR(A,O) where Eve i wins is
clearly MSO∼-definable, closed under bisimulation, and the synchronous perfect-
recall relation ∼ is regular8.

Proof of Theorem 4. We prove that Theorem 4 holds, already when we consider
only two actions and one observation, i.e. A = {a0, a1} and O = {o}.

The proof is dealt with by contradiction: Assume that there is a formula
ΦWin ∈ L∼µ such that for every Gi ∈ R(A,O), Gi |=∼ ΦWin if, and only if, Eve i has

a winning strategy in Gi. By Proposition 3, there is a JTA A = (AP,Q, qι, δ, C)
such that L(ΦWin,∼) = L(A,∼). Let N := |Q|+ 1.

We describe 2N (unfoldings of) games in R(A,O) where Eve i wins. For each
one, we exhibit a winning strategy in the (perfect information) acceptance game
of A on this unfolding. We then employ the “pigeon hole” principle to show
that at least two of these “accepting” strategies can be combined into a new
“accepting” strategy of Eve, entailing acceptance by A of a game in R(A,O)
where Eve i has no winning strategy, hence the contradiction.

The family of game unfoldings that we consider is depicted in Figure 1. They
all share the same unmarked tree τ , and for all k ∈ {1, . . . , 2N + 2}, [τ ]yk is the
full binary tree with action a0 (resp. a1) leading to the left (resp. right) child. Let
wk ∈ {0, 1}N be the binary representation of k−1. Between the different trees ti,
the markings only differ on the leaves of [τ ]y2N+1

and [τ ]y2N+2
: for 1 ≤ i ≤ 2N , in

[ti]y2N+1
and [ti]y2N+2

, the only nodes in F are y2N+1 ·wi and y2N+2 ·wi. Finally,

since Eve i is blind, her strategies are simply described by sequences of actions.
For each 1 ≤ i ≤ 2N , write Gi = (V i, viι, E

i, V iE , V
i
A, C

i) for GtiA,∼, i.e. the
acceptance game of A on ti with relation ∼.

Clearly, for each 1 ≤ i ≤ 2N , Eve i wins ti, and thus Eve wins Gi. Let σi be a
winning strategy for Eve in each game Gi. Let visitσi : τ → 2Q associate to each
node of τ the set of states of A visited by strategy σi: formally, visitσi(x) := {q |
∃π ∈ Out(Gi, σi),∃n ≥ 0,∃α ∈ B+(Dir ×Q) s.t. π[n] = (x, q, α)}.

Since there are at most 2|Q| different such sets of states, and we have 2N

strategies with N = |Q|+1, there exist i 6= j s.t. visitσi
(y2N+1) = visitσj

(y2N+1).
Fix such a pair (i, j), and define the game unfolding t0, obtained from ti by
replacing the subtree [ti]y2N+1

with [tj ]y2N+1
(see Figure 1). Note that t0 is

7 i.e. has a winning strategy
8 a one-state transducer that accepts it can easily be exhibited
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Fig. 1. The tree ti, the tree tj , and the hybrid tree t0.

the unfolding of a game in R(A,O). Let us write G0 = (V 0, v0ι , E
0, V 0

E , V
0
A, C

0)
for Gt0A,∼. Observe that the three games Gi, Gj and G0 share the same set of
positions: V 0 = V i = V j = τ ×Q×B+(Dir ×Q) that we now write V . Also, for
all 1 ≤ k ≤ 2N +2, ` yk0 = ` yki = ` ykj (= {o}), that we now write `. We succinctly
write vqk for positions (yk, q, δ(q, `)), which play an important role.

The following lemma allows us to transfer the existence of winning strategies
in positions vqk from Gi and Gj to G0.

Lemma 2. 1. For all q ∈ Q and k 6= 2N + 1, (G0, vqk) - (Gi, vqk), and
2. for all q ∈ Q and k 6= 2N + 2, (G0, vqk) - (Gj , vqk).

By design of t0, Eve i has no winning strategy in t0. Therefore, t0 6|=∼ ΦWin,
and thence t0 /∈ L(A,∼), i.e. Eve does not have a winning strategy in the accep-
tance game G0 of JTA A on t0 with path relation ∼. We establish Proposition 7
below, which provides a contradiction and terminates the proof of Theorem 4.

Proposition 7. Eve has a winning strategy in G0.

Proof sketch. Let us define Startτ := {ε, x1, . . . , x2N+2}, the two first levels of
τ , and StartG := {(x, q, α) ∈ V | x ∈ Startτ}. Every play in G0 starts in StartG .
Note that from any position of StartG , the same moves are available in G0, Gi
and Gj . In G0, we let Eve follow σi as long as the game is in StartG . If the
game remains in StartG for ever (by jumping infinitely), the obtained play is an
outcome of σi, which is winning for Eve in Gi. Because positions have the same
colour in all acceptance games, this play is also winning for Eve in G0. Otherwise,
the play exits StartG by going down the tree, hence it reaches some position vqk.
Because vqk has been reached by the winning strategy σi, it is a winning position
for Eve in the perfect-information parity game Gi. If k 6= 2N + 1, by Point 1 of
Lemma 2, i.e. (G0, vqk) - (Gi, vqk), Eve also has a winning strategy from vqk in G0.



If k = 2N + 1, because visitσi
(y2N+1) = visitσj

(y2N+1), σj also visits position
vq
2N+1

, and therefore vq
2N+1

is a winning position for Eve in Gj . By Point 2 of

Lemma 2, i.e. G0, vqk - Gj , vqk, Eve also has a winning strategy from vqk in G0. ut

6 Conclusion and perspectives

We have considered a general setting where transition systems are equipped with
path relations. We have proposed natural extensions of MSO and the µ-calculus
in this setting: MSOÀ, which is MSO with path relations, and LÀµ , which is the
jumping µ-calculus. We have studied the question of whether the bisimulation-
invariant fragment of MSOÀ and LÀµ have the same expressivity, like in [17]. In
the case of recognizable relations, the whole picture collapses to the classic case
(Theorem 1). However, for the synchronous perfect recall path relation (a regular
binary relation that captures models of agency with time and knowledge), the
answer is negative (Theorem 2).

Our results suggest that the adequate logic on transition systems with path
relations may lie in between LÀµ and MSOÀ: on the one hand, the latter is unde-
cidable for regular path relations as simple as the “Equal Level” relation [25]; on
the other hand fundamental decidable properties, such as winning in two-player
imperfect-information games with perfect recall, are not captured by the former
(Theorem 4). Remark that this property is expressible in Alternating-time Tem-
poral Logic with imperfect information, which is therefore not subsumed by the
jumping mu-calculus, but whose model-checking is decidable for one agent with
synchronous perfect recall.

In addition, both the epistemic mu-calculus and imperfect-information games
are decidable for perfect-recall when the knowledge of the agents is hierarchically
ordered [7, 21]. Recent results on games with imperfect information also signal
other classes of models with several agents and perfect recall that can be handled
[6]. So even for the case of several relations on paths, a logic that would encom-
pass both the (jumping) mu-calculus and games with imperfect information may
have good computational properties on interesting classes of systems.
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