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Abstract
Epistemic planning is a variant of automated plan-
ning in the framework of dynamic epistemic logic.
In recent works, the epistemic planning problem
has been proved to be undecidable when precon-
ditions of events can be epistemic formulas of arbi-
trary complexity, and in particular arbitrary modal
depth. It is known however that when precondi-
tions are propositional (and there are no postcon-
ditions), the problem is between PSPACE and EX-
PSPACE. In this work we bring two new pieces to
the picture. First, we prove that the epistemic plan-
ning problem with propositional preconditions and
without postconditions is in PSPACE, and is thus
PSPACE-complete. Second, we prove that very sim-
ple epistemic preconditions are enough to make the
epistemic planning problem undecidable: precon-
ditions of modal depth at most two suffice.

1 Introduction
A key objective in artificial intelligence is to develop au-
tonomous agents able to plan their actions towards achieving
their goals, and to reason about their own and other agents’
knowledge. Planning, which consists in finding a sequence of
actions to reach a given objective from an initial situation, is a
central research domain in artificial intelligence. Concerning
reasoning about knowledge, dynamic epistemic logic (DEL)
is now recognised as a very promising framework [van Dit-
marsch et al., 2007]. Recently, planning and dynamic epis-
temic logic have been combined in the so-called epistemic
planning problem [Bolander and Andersen, 2011].

In DEL, events can deal with high-order reasoning. For
instance we may model the following event:

“Anne receives a letter revealing that ϕ is true and Bob
knows that Anne receives the truth value of ϕ but Anne
is unsure whether Bob knows that or not.”

In DEL, ϕ is called a precondition: ϕ needs to be true for this
event to occur, and therefore its occurence brings the informa-
tion that ϕ is true. This event is purely informative, but DEL
also allows physical (ontic) effects on the world; these are
referred to as postconditions. One natural question is: how
does the nesting of knowledge in pre- and postconditions im-
pact the complexity of the epistemic planning problem?

no postconditions with postconditions
d = 0 PSPACE-complete Decidable
d ≤ 1 ? Undecidable
d ≤ 2 Undecidable Undecidable

unbounded Undecidable Undecidable

Table 1: Overview (d: modal depth; gray: this paper).

⇓
⇓⇒

On the one hand, when only propositional preconditions
are used, such as ϕ = “Bob is married”, the problem is decid-
able if postconditions are also propositional [Yu et al., 2013].
In this case it is in k-EXPTIME, where k is the maximal modal
depth of goal formulas [Aucher et al., 2014]; if there are no
postconditions (events are purely epistemic), the problem is
in EXPSPACE [Bolander et al., 2015].

On the other hand, epistemic preconditions such as
ϕ = “Bob considers it possible that Anne knows that Bob does
not know that it is raining” yield undecidability: if proposi-
tional postconditions are allowed, then the problem is already
undecidable with preconditions of modal depth one [Bolan-
der and Andersen, 2011]. It is also known to be undecid-
able without postconditions, if we allow for preconditions of
unbounded modal depth [Aucher and Bolander, 2013]. See
Table 1 for a summary of results about epistemic planning.

In this paper, our contribution is twofold:

1. With propositional preconditions and no postconditions,
epistemic planning is in PSPACE (Theorem 1). The key
point is that in this case events commute [Löwe et al.,
2011]. This allows for a succinct representation of tu-
ples of events, and we build upon a model checking pro-
cedure from [Aucher and Schwarzentruber, 2013] to de-
vise a polynomial space decision procedure.

2. Epistemic planning without postconditions is already
undecidable with preconditions of modal depth two
(Theorem 2). The proof, by reduction from the halt-
ing problem for two counter machines, refines the one
given in [Aucher and Bolander, 2013], which requires
preconditions with unbounded modal depth. By design-
ing more involved gadgets to code the configurations and
instructions of the machines, we manage to bound the
modal depth of preconditions.



We first recall the background on epistemic planning in
Section 2. We establish our two contributions, described
above, in Section 3 and Section 4 respectively. We briefly
discuss future work in Section 5.

2 Background on epistemic planning
In this section, we recall the necessary background about dy-
namic epistemic logic and epistemic planning.

2.1 Dynamic epistemic logic
Let AP be a countably infinite set of atomic propositions,
and let Ag = {1, . . . , n} be a finite set of agents. The epis-
temic language LEL is the language of propositional logic
extended with one knowledge modality for each agent. In-
tuitively, Kaϕ reads as “agent a knows that ϕ holds”. The
syntax of LEL is given by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ,where p ∈ AP and a ∈ Ag.

The semantics of LEL is given in terms of epistemic mod-
els that represent how the agents perceive the world.

Definition 1 An epistemic modelM = (W, {Ra}a∈Ag, V ) is
a tuple where:

• W is a non-empty finite set of possible worlds,

• Ra ⊆W ×W is an accessibility relation for agent a,

• V : AP → 2W is a valuation function.

We write w ∈ M for w ∈ W , |M| for |W |, and (M, w)
is called a pointed epistemic model. The intended meaning of
wRaw

′ is that in world w agent a considers that w′ might be
the actual world.

The semantics of LEL is defined as follows:

• M, w |= p if w ∈ V (p);

• M, w |= ¬ϕ if it is not the case thatM, w |= ϕ;

• M, w |= (ϕ ∨ ψ) ifM, w |= ϕ orM, w |= ψ;

• M, w |= Kaϕ if for all w′ s.t. wRaw
′,M, w′ |= ϕ.

Dynamic epistemic logic (DEL) extends epistemic logic
with modalities that represent the occurrence of events. In
DEL events are represented by event models, defined below.
In general DEL events can bring information and modify the
world, and such events are called ontic events [van Ditmarsch
and Kooi, 2006]; in this work however we focus on purely in-
formative events, called epistemic events [Baltag et al., 1998].

Definition 2 An event model E = (E, {→a}a∈Ag, pre) is a
tuple where:

• E is a non-empty finite set of possible events,

• →a⊆ E×E is an accessibility relation on E for agent a,

• pre : E→ LEL is a precondition function.

We write e ∈ E for e ∈ E, |E| for |E|, and (E , e) is called
a pointed event model, where e represents the actual event
of (E , e). An event e can occur in a world w of an epis-
temic model M if, and only if, its precondition is verified,
i.e.M, w |= pre(e), which leads to the following definition:

w : p u :

1, 2

1, 2 1, 2
e : p

f : >
2

1

1, 2

(w, e) : p

(w, f) : p (u, f) :

2
2

1, 2

1

1, 2

1, 2

(a) (b) (c)

Figure 1: Example of a product.

Definition 3 Given M = (W, {Ra}a∈Ag, V ) an epistemic
model and E = (E, {→a}a∈Ag, pre) an event model,
the update product of M and E is the epistemic model
M⊗E = (W⊗, {R⊗a }a∈Ag, V

⊗) where:

W⊗ = {(w, e) ∈W × E | M, w |= pre(e)},
R⊗a (w, e) = {(w′, e′) ∈W⊗ | wRaw

′ and e→a e
′},

V ⊗(p) = {(w, e) ∈W⊗ | M, w |= p}
The product of a pointed epistemic model (M, w) with a

pointed event model (E , e) is defined as (M, w) ⊗ (E , e) :=
(M⊗E , (w, e)) ifM, w |= pre(e), otherwise it is undefined.

We can now define the syntax and semantics of DEL. The
syntax is given by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Kiϕ | 〈E , e〉ϕ,
where p ∈ AP , i ∈ Ag and (E , e) is a pointed event model.

The semantics is the same as for LEL, with the following
additional case:
• M, w |= 〈E , e〉ϕ ifM, w |= pre(e), and

(M, w)⊗ (E , e) |= ϕ.

Example 1 Consider the pointed epistemic model (M, w)
in Figure 1(a). Proposition p is true in the ac-
tual world w but both agents a, b do not know that p
holds:M, w |= ¬K1p∧¬K2p. Figure 1(b) shows a pointed
event model (E , e) where the precondition of the actual event
e is p, and the one of event f is >. (E , e) represents the
event where agent 1 learns that p is true while agent 2 be-
lieves that nothing happens. Figure 1(c) shows the product
(M, w) ⊗ (E , e), which represents the situation after event
(E , e). Observe that agent 1 knows p and agent 2 does not.
Remark 1 We do not make any assumption on the nature of
the accessibility relations in epistemic and event models.

2.2 Epistemic planning
Let C be a class of pointed event models. The epistemic plan-
ning problem restricted to C is the following:
Definition 4 (Epistemic planning problem)

Input: a pointed epistemic model (M, w), a finite set
of pointed event models E ⊆ C, and an epistemic goal
formula ϕg;
Output: yes if there exists a sequence of pointed event
models (E1, e1), . . . , (Ep, ep) ∈ E (a plan) such that
M, w |= 〈E1, e1〉 . . . 〈Ep, ep〉ϕg; no otherwise.

We now establish the precise complexity of this problem
for propositional event models.



3 Propositional preconditions
Let C0 be the class of (pointed) epistemic event models where
preconditions are propositional formulas. For instance, the
pointed event model depicted in Figure 1(c) is in C0 since both
p and > are propositional formulas. The epistemic planning
restricted to C0 is known to be PSPACE-hard [Bolander et al.,
2015]. We establish that it is actually PSPACE-complete.

As pointed out in [Löwe et al., 2011], epistemic event mod-
els with propositional preconditions commute. Formally:

Lemma 1 For all pointed epistemic models (M, w), for
all pointed event models (E1, e1) and (E2, e2) in C0,
M⊗ E1 ⊗ E2, (w, e1, e2) exists iffM⊗ E2 ⊗ E1, (w, e2, e1)
exists, and in that case they are bisimilar.

As a consequence, in the rest of the section, the order in
which events are applied in an initial world is indifferent.
Only the number of times each event occurs is relevant, and
the proof of our result heavily relies on this property.

We first establish a preliminary result on the model check-
ing problem for a dedicated language: we extend the dy-
namic epistemic language with iterations of event models in
C0, that is, constructions of the form 〈(E , e)`〉ψ where (E , e)
is a pointed event model in C0 and ` is a positive integer.
We suppose here that ` is written in binary so that this lan-
guage, called Lit

C0 , is exponentially more succinct than DEL.
Classically, the model checking problem for Lit

C0 is, given a
pointed epistemic model (M, w) and a formula Φ ∈ Lit

C0 , to
decide whetherM, w |= Φ.

Proposition 1 Model checking Lit
C0 is in PSPACE.

Proof We design a deterministic algorithm that takes as
an input a pointed epistemic model (M, w0) and a formula
Φ ∈ Lit

C0 , and decides whether M, w0 |= Φ. Without loss
of generality, we suppose that all event models appearing in
the formula are the same, noted E = (E,→, pre) (if not, we
replace each one by their disjoint union). Let e1, . . . , e|E| be
an enumeration of the possible events in E . By Lemma 1, all
permutations of events in a tuple (w, ei1 , . . . , eip) are equiva-
lent in the sense that either they all are worlds inM⊗Ep and
they all are bisimilar, or none of them exists: only the number
of times each event occurs is relevant. For a world w and a
vector ~n = (n1, . . . , n|E|), we thus let w•~n denote the repre-
sentative permutation (w, e1, . . . , e1︸ ︷︷ ︸

n1 times

, . . . , e|E|, . . . , e|E|︸ ︷︷ ︸
n|E| times

).

Let mc be the algorithm given in Figure 2, and let 0|E| de-
note the null |E|-vector. We claim that mc(M, w0, E , 0|E|,Φ)
returns true iffM, w0 |= Φ. To prove this claim we establish
that for all w ∈ M, all integers n1, . . . , n|E| and all subfor-
mula ϕ of Φ, the following property P holds:

IfM⊗E
∑|E|

i=1 ni , w•~n exists then
mc(M, w, E , (n1, . . . , n|E|), ϕ) returns true iff

M⊗E
∑|E|

i=1 ni , w•~n |= ϕ.
Property P is proven by induction on ϕ. We omit the boolean
cases and case 〈(E , ei)`〉ψ which are trivial.

Case Kaψ: the algorithm has to check that ψ holds in all
a-successors of w•~n in M⊗ E

∑|E|
i=1 ni . Every a-successor

of w•~n is a permutation of some u•~̀ and is bisimilar to it.
We thus need to enumerate all worlds u and vectors ~̀ that
represent some a-successor, and verify that ψ holds in u•~̀.
Given a tuple u•~̀, to check whether it is a permutation of
some a-successor of w•~n, we first check that it is an exist-
ing world in M ⊗ E

∑|E|
i=1 ni . Since events are purely epis-

temic and propositional, preconditions of successive events
can all be checked in the initial world u. This is done by
calling function preok(M, u, E , ~̀), which checks that for
all i ∈ {1, . . . , |E|}, if `i > 0 then pre(ei) is true in u.
Next, we check that some permutation of u•~̀ is indeed a-
related to w•~n: we should first have u ∈ Ra(w); then, it
should be possible to map each occurrence of an event ei
in w•~n to some occurrence of some a-related event ej in
u•~̀ so as to form a bijection. Deciding whether such a bi-
jection exists amounts to solving the following integer lin-
ear program: checking whether there exist positive integers
(xi,j)(i,j)∈{1,...,|E|}2|ej∈Ra(ei)

, where xi,j is the number of
times ej is chosen as a-successor for ei, such that:

(S)

{
ni =

∑
j|ej∈Ra(ei)

xi,j for all i ∈ {1, . . . , |E|},
`j =

∑
i|ei∈Ra(ej)

xi,j for all j ∈ {1, . . . , |E|}.

This is done by calling succ(E , a, ~n, ~̀).

Spatial complexity. The maximal number of nested calls
is bounded by |Φ|, so that the number of local variables to be
stored is polynomial in |Φ|. Next, the space used to store vec-
tor ~n in each call is in O(|Φ|2) (see [Charrier et al., 2016] for
details). Finally, checking consistency of a system (S) can
be done in non-deterministic time polynomial in the number
of bits needed to encode ~n and ~̀ [Papadimitriou, 1981], and
therefore in deterministic space polynomial in |Φ|. �

Theorem 1 The epistemic planning problem restricted to C0
is in PSPACE.

Proof We adapt the algorithm given in [Bolander et al.,
2015] (Theorem 5.8). First it is proved in [Sadzik, 2006] that,
noting 'd the d-bisimulation1 for event models (see [Bolan-
der et al., 2015; Sadzik, 2006; van Ditmarsch et al., 2007]),
for every d ≥ 0, every pointed event model (E , e) is 'd-
stabilizing at iteration |E|d; formally, (E , ei)k 'd (E , ei)k+1

for all k ≥ |E|d.2 Secondly, by Lemma 1, event models with
propositional preconditions commute. Therefore, the follow-
ing algorithm correctly solves the epistemic planning prob-
lem for event models with propositional preconditions:

Given input 〈(M, w), {(E1, e1), . . . , (Em, em)}, ϕg〉:
1. Compute d, the modal depth of the goal formula ϕg;
2. For each i ∈ {1, . . . ,m}, non-deterministically guess
ni ∈

{
0, . . . , |Ei|d

}
;

3. Accept ifM, w |= 〈(E1, e1)n1〉 . . . 〈(Em, em)nm〉ϕg .
This algorithm is non-deterministic. The first step is clearly

performed in space polynomial in the size of the input. Con-
cerning the second point, each ni can be exponential in d

1Bisimulation up to modal depth d.
2Actually a better bound is proved in [Bolander et al., 2015].



function mc(M, w, E , ~n, ϕ)
match ϕ

case p: return (p is true in w)
case ¬ψ: return not mc(M, w, E , ~n, ψ)
case (ψ1 ∨ ψ2) :

return mc(M, w, E , ~n, ψ1) or mc(M, w, E , ~n, ψ2)
case Kaψ :

for u ∈ Ra(w), ~̀ ∈ N|E| s.t.
∑|E|

i=1 `i =
∑|E|

i=1 ni

if

 preok(M, u, E , ~̀)
and succ(E , a, ~n, ~̀)
and not mc(M, u, E , ~̀, ψ)

 then

return false
return true

case 〈(E , ei)`〉ψ :
if pre(ei) is false in w then

return false
return mc(M, w, E ,

(n1, .., ni−1, ni + `, ni+1, .., nk), ψ)

Figure 2: Algorithm mc for model checking Lit
C0 .

and thus in |ϕg|, but its binary representation uses polyno-
mial space. Since 〈(E1, e1)n1〉 . . . 〈(Em, em)nm〉ϕg is an Lit

C0
formula, it follows from Proposition 1 that the last step can
also be performed in polynomial space. The epistemic plan-
ning problem restricted to C0 is therefore in NPSPACE and
thus in PSPACE by Savitch’s theorem [Savitch, 1970]. �

We now turn to the case of modal preconditions with
bounded modal depth.

4 Preconditions of bounded modal depth
Let C2 be the class of event models with preconditions of
modal depth at most two. In this section, we prove the fol-
lowing theorem by refining the reduction given in [Aucher
and Bolander, 2013].

Theorem 2 The epistemic planning problem restricted to C2
is undecidable.

We first recall the halting problem for two-counter ma-
chines, known to be undecidable [Minsky, 1967], and then
we reduce it to the epistemic planning problem restricted to
C2.

4.1 Two-counter machines
We present two-counter machines as introduced in [Minsky,
1967].

Definition 5 A two-counter machine M is a sequence of in-
structions (I0, . . . , IN ) where
• For each ` < N , I` is either inc(i), goto(`′) or
gotocond(i, `′), with i ∈ {1, 2}, `′ ≤ N and ` 6= `′;
• IN = halt.

We call program line a pair k:Ik.

Example 2 The four program lines
shown on the right define a two-
counter machine Mex.

0:inc(1)
1:gotocond(1, 3)
2:goto(0)
3:halt

PC ` = 1

c1 = 3 c2 = 2

a0 a1 aN

a1

. . .
a2

p1

q1
p1

p1

p1

p2

q2
p2

p2

Figure 3: Pointed epistemic model (M, w)(1,3,2).

A configuration of a two-counter machine M is a triple
(`, c1, c2) where ` ∈ {0, . . . , N} is the program counter and
c1, c2 ∈ N are the two data counters.
Let CM = {0, . . . , N} × N × N be the set of all possible
configurations.

The transition function→M on CM is defined as follows.
For all (`, c1, c2) ∈ CM :

• If I` = inc(1), (`, c1, c2)→M (`+ 1, c1 + 1, c2);

• If I` = inc(2), (`, c1, c2)→M (`+ 1, c1, c2 + 1);

• If I` = goto(`′), (`, c1, c2)→M (`′, c1, c2) ;

• If I` = gotocond(1, `′),

(`, c1, c2)→M

{
(`′, 0, c2) if c1 = 0;

(`+ 1, c1 − 1, c2) otherwise;

• If I` = gotocond(2, `′),

(`, c1, c2)→M

{
(`′, c1, 0) if c2 = 0;

(`+ 1, c1, c2 − 1) otherwise.

A two-counter machine M halts if there exist c1, c2 such
that (0, 0, 0)→∗M (N, c1, c2), where→∗M denotes the reflex-
ive transitive closure of→M . For instance, the machine Mex

given in Example 2 above does not halt. The halting problem
for two-counter machines consists in deciding, given a two-
counter machine, whether it halts or not. This problem is well
known to be undecidable [Minsky, 1967].

4.2 The reduction
We define an effective reduction tr that, given a two-
counter machine M , computes an instance tr(M) of the
epistemic planning problem restricted to C2. We fix M
and the rest of the section is devoted to defining tr(M) =
〈(M0, w0);E;ϕg〉 and justifying its correctness (Proposi-
tion 2). As in [Aucher and Bolander, 2013], we only use one
agent a (� stands for Ka and ♦ stands for ¬Ka¬), config-
urations of M are represented by pointed epistemic models,
and the initial pointed epistemic model represents the initial
configuration (0, 0, 0). Each program line `:I` is represented
by one or two pointed event model(s), such that a plan cor-
responds to a sequence of program lines. The goal formula
expresses that the final pointed epistemic model represents a
halting configuration.

Pointed epistemic models
Let (`, c1, c2) be a configuration of M . We describe the
pointed epistemic model (M(`,c1,c2), w(`,c1,c2)) (shortened



PC ` = 0
c1 = 0 c2 = 0

a0 a1 aN

a0

. . .
p1 q1 p2 q2

Figure 4: Pointed epistemic model representing the initial
configuration (0, 0, 0).

as (M, w)(`,c1,c2)) that represents (`, c1, c2). For instance,
Figure 3 shows (M, w)(1,3,2). It is a tree-like structure rooted
at w(`,c1,c2). In each world except the root, there is exactly
one true atomic proposition, and we call p-world any world
where p holds. The root w(`,c1,c2) verifies no atomic proposi-
tion, and it has three groups of children, one for each counter:
Program counter. For each program line `′ : I`′ , w(`,c1,c2)

has one reflexive child labeled by proposition a`′ . The
a`-child ofw(`,c1,c2) has a child also labeled by a`, with-
out any outgoing edge: we say that there is an a`-strip.

Data counter ci. For each i ∈ {1, 2}, w(`,c1,c2) has a reflex-
ive pi-child that has an irreflexive qi-child, and is fol-
lowed by a chain of irreflexive pi-worlds of length ci.

We now define the first component of tr(M):
(M0, w0) := (M, w)(0,0,0), depicted in Figure 4. We
call configuration model a pointed epistemic model of the
form (M, w)(`,c1,c2).

Pointed event models
For each program line `:I` of M where I` is of the
form goto(`′) or inc(i), we define a pointed event model
(E`:I` , e`:I`) (shortened as (E , e)`:I` ) that mimics the se-
mantics of `:I` (Figures 6 and 8). For each program line
`:gotocond(i, `′) of M , we define two pointed event mod-
els (E , e)`:gotocond(i,`′) and (E>0, e>0)`:gotocond(i,`′), respec-
tively for the case ci = 0 and ci > 0 (Figure 9). These
pointed event models form the second component of tr(M):
E := {(E , e)`:I` | ` < N} ∪

{(E>0, e>0)`:I` | ` < N and I` = gotocond(i, `′)}.
In model (M, w)(`,c1,c2) where ` < N , the only pointed

event model of E that should be applied is the one repre-
senting the behavior of program line `:I` in configuration
(`, c1, c2). This event model is defined as follows:

E(`, c1, c2) :=

 (E>0, e>0)`:I` if I` = gotocond(i, `′)
and ci > 0,

(E , e)`:I` otherwise.

The product with any other event model from E results in a
model that is not valid according to the following definition:

Definition 6 A pointed epistemic model (M, w) is valid if w
has an a`-child for each ` ∈ {0, . . . , N} and a pi-child for
each i ∈ {1, 2}.

Note that by definition, every configuration model is valid.
Further down, we will define event models of E such that:

Lemma 2 For every configuration (`, c1, c2), it holds that

>

a0
. . .

a` ∧ ♦�⊥ a`′

a`′

. . . . . .
aN

Figure 5: Event model portion repl(`, `′) for ` 6= `′.

>

repl(`, `′)
p1 q1 p2 q2

Figure 6: Event model for `:goto(`′).

1. (M, w)(`,c1,c2) ⊗ E(`, c1, c2) is isomorphic3 to
(M, w)(`′,c′1,c′2), where (`, c1, c2)→M (`′, c′1, c

′
2).

2. The product of (M, w)(`,c1,c2) with any other event
model from E is defined but not valid.

3. For any set of event models (E1, . . . ,En) and any event
model En+1, if (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is not
valid, (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En ⊗ En+1 is also
not valid.

We now describe the event models in E and at the same
time we prove Lemma 2. Each of these models has three
groups (from left to right on Figures 6, 8, 9), that update
respectively the program counter group, the data counter c1
group and the data counter c2 group of configuration models.

Event model for ` : goto(`′). The pointed event model
(E , e)`:goto(`′), that mimics the effect of `:goto(`′), is de-
picted in Figure 6. Portion repl(`, `′) concerns the program
counter group and is described in Figure 5. The two other
groups leave the data counter groups c1 and c2 unchanged.

• The product (M, w)(`,c1,c2)⊗(E , e)`:goto(`′) is isomorphic
to (M, w)(`′,c1,c2): indeed, portion repl(`, `′) removes the
a`-strip and adds an a`′ -strip in the program counter group
(recall that ` 6= `′).

• The product (M, w)(`′′,c1,c2)⊗ (E , e)`:goto(`′) with `′′ 6= `
is not valid. Indeed, as (M, w)(`′′,c1,c2) does not have an
a`-strip in its program counter group, its a`-world violates
precondition a` ∧ ♦�⊥ in portion repl(`, `′). As a conse-
quence, (M, w)(`′′,c1,c2) ⊗ (E , e)`:goto(`′) has no a`-child
at its root and is thus not valid.

Event model for ` : inc(i). Figure 8 shows (E , e)`:inc(1)
that mimics the effect of ` : inc(1) (for inc(2), the construc-
tion is symmetric). Portion repl(`, ` + 1) is meant to incre-
ment the program counter. Portion lengthen(1) (described

3More precisely, the reachable parts of the pointed epistemic
models are isomorphic.



pi ∧ ♦qi qi

pi ∧ ♦qi

pi ∧ ¬♦qi

pi ∧ ♦qi ∧ ♦(pi ∧�¬qi) qi

pi ∧ ¬♦qi ∧ ♦>

Figure 7: Event model portions lengthen(i) and shorten(i).

>

repl(`, `+ 1)

lengthen(1)

p2 q2

Figure 8: Event model for `:inc(1).

in Figure 7) is meant to increment the data counter c1. The
intermediate event of precondition p1 ∧ ♦q1 duplicates once
the p1-child of the root: it adds one p1-world at the start of the
p1-chain. The last group leaves data counter c2 unchanged.

• The product (M, w)(`,c1,c2) ⊗ (E , e)`:inc(1) is isomorphic
to (M, w)(`+1,c1+1,c2).

• For the same reason as for (E , e)`:goto(`′), the product
(M, w)(`′′,c1,c2) ⊗ (E , e)`:inc(1) with `′′ 6= ` is not valid.

Event models for ` : gotocond(i, `′). Figure 9 describes
models (E , e)`:gotocond(1,`′) and (E>0, e>0)`:gotocond(1,`′).
They mimic the effect of ` : gotocond(1, `′) in case c1 = 0
and case c1 > 0, respectively (for ` : gotocond(2, `′), con-
structions are symmetric).

• (M, w)(`,0,c2) ⊗ (E , e)`:gotocond(1,`′) is isomorphic to
(M, w)(`′,0,c2): indeed, precondition ¬♦(p1 ∧ ¬♦q1)
checks that the p1-chain in the data counter c1 group is
of length 0. Here it is the case, so that the data counter
group c1 remains unchanged. However, when c1 > 0,
the p1-child of the root of (M, w)(`,c1,c2) violates this
precondition. It is thus removed, so that the product
(M, w)(`,c1,c2) ⊗ (E , e)`:gotocond(1,`′) is not valid.

• (M, w)(`,c1,c2) ⊗ (E>0, e>0)`:3gotocond(1,`′) with c1 > 0
is isomorphic to (M, w)(`+1,c1−1,c2). Indeed, portion
shorten(1) (Figure 7) is meant to decrement data counter
c1 by one: precondition p1 ∧ ¬♦q1 ∧ ♦> checks that we
are in the p1-chain (p1), but not at the start (¬♦q1) nor
the end (♦>) of the chain. The last world of the p1-chain
is thus removed when c1 > 0. When c1 = 0, precon-
dition ♦(pi ∧ �¬qi) is violated by the p1-child of the
root of (M, w)(`,0,c2): indeed, this precondition checks
that the length of the p1-chain is at least 1. The product
(M, w)(`,0,c2)⊗(E>0, e>0)`:gotocond(1,`′) is thus not valid.

• For `′′ 6= `, (M, w)(`′′,c1,c2) ⊗ (E , e)`:gotocond(1,`′) and
(M, w)(`′′,c1,c2) ⊗ (E>0, e>0)`:gotocond(1,`′) are not valid.

(E , e)`:gotocond(1,`′) >

repl(`, `′)

¬♦(p1∧¬♦q1) q1
p2 q2

(E>0, e>0)`:gotocond(1,`′) >

repl(`, `+ 1)

shorten(1)

p2 q2

Figure 9: Event models for `:gotocond(1, `′).

Note that the product of a non-valid pointed epistemic
model with any pointed event model is not valid since no
event model can create the missing children of the root with-
out using postconditions.

Goal formula
The goal formula ϕg in tr(M) is ϕvalid ∧ ϕhalt, where:

• ϕvalid :=
∧N

`=0 ♦a` ∧ ♦p1 ∧ ♦p2, and
• ϕhalt := ♦(aN ∧ ♦�⊥).

Proposition 2 M halts iff there is a plan for tr(M).

The proof can be found in [Charrier et al., 2016].

4.3 Comparison
In [Aucher and Bolander, 2013] the program counter as well
as the data counters are represented with chains of worlds,
and incrementation, decrementation and replacement of a
value by another one are implemented on such chains. While
the first two operations can be performed with preconditions
of modal depth two, repl(`, `′) requires unbounded nesting
in general to be implemented on chains. We observed that
unlike data counters, the program counter is bounded so that
we can avoid chains for its representation, and provide an al-
ternative gadget for repl(`, `′) that only uses preconditions of
modal depth two.

5 Future work
The natural continuation is to complete Table 1. First, is the
epistemic planning problem decidable for preconditions of
modal depth one and no postconditions, or do modalities in
preconditions immediately bring about undecidability? Sec-
ond, what is the exact complexity of the problem with propo-
sitional pre- and postconditions? It is known to be decidable
[Yu et al., 2013], with a non-elementary upper bound [Aucher
et al., 2014] and a PSPACE lower bound [Bolander et al.,
2015]; this a big gap that should be bridged.
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