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Abstract. Dynamic Epistemic Logic (DEL) is a logical framework
in which one can describe in great detail how actions are perceived
by the agents, and how they affect the world. DEL games were re-
cently introduced as a way to define classes of games with imperfect
information where the actions available to the players are described
very precisely. This framework makes it possible to define easily,
for instance, classes of games where players can only use public ac-
tions or public announcements. These games have been studied for
reachability objectives, where the aim is to reach a situation satis-
fying some epistemic property expressed in epistemic logic; several
(un)decidability results have been established.

In this work we show that the decidability results obtained for
reachability objectives extend to a much more general class of win-
ning conditions, namely those expressible in the epistemic temporal
logic LTLK. To do so we establish that the infinite game structures
generated by DEL public actions are regular, and we describe how to
obtain finite representations on which we rely to solve them.

1 Introduction
Strategic reasoning in multi-agent systems refers to a number of im-
portant issues for settings where a team of agents have to take deci-
sions in order to achieve some goals, while evolving in an environ-
ment that may pursue different objectives. Application domains are
numerous (economics, robotics, distributed computing systems, web
services, etc). For instance, drones patrolling an area may have to
decide which trajectory to take so that the status (safe or unsafe) of
each zone in this area is always known to at least one of them, while
antagonistic agents try to keep the status of some areas secret. It is a
real challenge to automatically compute adequate individual strate-
gies for the agents. In this work we consider the distributed strategy
synthesis problem, in which a team of agents collaborates towards a
common goal, while the environment is purely antagonistic.

Because agents typically have a local view of the system, such
situations are usually modelled as imperfect information game are-
nas, i.e., graphs whose nodes represent positions of the game,
edges are the possible actions, and equivalence relations capture
indistinguishability of positions. To reflect imperfect information,
strategies must prescribe the same action in indistinguishable situ-
ations; such strategies are classically called uniform or observation-
based strategies [35, 19, 7, 28]. Also the goal, or winning condi-
tion, is often expressed in some logical language such as LTL [32,
31] or LTLK, its extension with knowledge operators [39, 40].
For the patrolling example, one could consider the LTLK formula
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ways, for every zone, some agent knows whether it is safe or not.
Distributed strategy synthesis is known to be undecidable [27, 31],

but the numerous literature on the topic has identified two main de-
cidable cases: the case where actions in the games are public (known
to all agents) [39, 40, 34, 6, 5, 12], and the case of hierarchical infor-
mation (the set of agents can be totally ordered so that what is known
propagates along this order) [21, 31, 18, 26, 17, 29, 36, 8].

However, the state explosion problem makes game structures often
very large, making distributed synthesis intractable. In order to cir-
cumvent this difficulty, we promote a planning approach using Dy-
namic Epistemic Logic (DEL) [41]: instead of representing explicitly
the game structure, we consider implicit descriptions by means of
DEL presentations. These consist in a finite initial epistemic model
that reflects the initial knowledge of the agents, and a finite set of
epistemic actions available to them and the other agents in the envi-
ronment. Such implicit descriptions make it easier for the modeller to
add, modify or remove actions. Also, since DEL action models were
introduced to represent in detail how events are observed by agents,
this setting is very convenient to define various types of actions such
as public actions or semi-private announcements, and study how re-
stricting to such actions can make distributed synthesis easier.

While DEL presentations have been widely used in epistemic
planning (finding a finite succession of events that achieves some
epistemic property) [11], only recently have adversarial aspects been
considered in this setting, along with strategic problems such as dis-
tributed strategy synthesis. In [25], agents are split into two antago-
nistic teams Agt∃ and Agt∀, and agents in Agt∃ pursue some goal
while agents in Agt∀ try to prevent them from winning (these are
zero-sum games). For reachability objectives where the team Agt∃
wants to reach a situation that satisfies some epistemic property, it
is shown in [25] that, as in the setting of explicit game arenas, dis-
tributed strategy synthesis is undecidable, but decidability can be re-
covered for the case of public actions and hierarchical information.

In this work we lift these decidability results from reachability
goals to the much larger family of winning conditions expressible
in the temporal epistemic logic LTLK, that blends temporal opera-
tors and epistemic modalities. This logic can express the reachability
objectives from [25] (they correspond to formulas of the form Fϕ,
where F is the “Finally” temporal operator and ϕ is an epistemic
formula), but also safety, liveness properties, and many more (see for
instance [40] for a detailed security example).

In all our decidability results, a crucial step is to show that the
game arena induced by a DEL game presentation, which is in gen-
eral infinite, can be represented finitely. This was already known for
the case of actions whose preconditions do not involve knowledge
but are purely propositional formulas (so-called propositional ac-



Type of DEL game presentation Logic Finite game structure construction Complexity

propositional actions and hierarchical information LTLK finitely many valuations decidable (Th. 3)

public actions LTLK by quotienting 2EXPTIME-complete (Th. 4)

public announcements LTL(U)K0 a poly-depth game tree PSPACE-complete (Th. 5)

Table 1. Summary of our contribution.

tions) [23, 15], and we use it to transfer an existing result for dis-
tributed synthesis in explicit game arenas with hierarchical informa-
tion. The main technical contribution of this work is to prove that
the infinite game generated from a DEL game presentation is regu-
lar also in the case of public actions. This is done by observing that,
modulo isomorphism, such actions can only generate finitely many
different epistemic models from the initial one, thus allowing us to
get an equivalent finite game as the quotient of the infinite one. This,
combined with a recent result on game arenas with public actions [6],
yields a procedure that runs in doubly exponential time, just as the
case of LTL games [32]. Additionally, for public announcements (a
special case of public actions) and the syntactic fragment of LTLK
without next operator and local knowledge properties only, we show
an even stronger characteristic of game arenas that allows us to re-
duce to a polynomial-length horizon game and to derive an optimal
PSPACE procedure. Table 1 sums up our results.

Related work. The only work on DEL games that we are aware of
is [25], and it only considers reachability objectives. However our
results relate to the many aforementioned results for distributed syn-
thesis in explicit game structures with either public actions or hier-
archical information. Those dealing with epistemic temporal logic
are the closest to ours and can be found in [33, 24] for hierarchical
information, and [39, 40, 6, 5] for public actions.

Plan. Section 2 recalls games with imperfect information and the
logic LTLK. Section 3 recalls DEL game presentations as defined in
[25]. The central sections 4, 5, 6 describe our contributions for the
cases of propositional actions, public actions and public announce-
ments, respectively. We discuss our results in Section 7.

2 Preliminaries

In this section we recall basics about games with imperfect informa-
tion and the epistemic temporal logic LTLK.

2.1 Games with imperfect information

We consider multiplayer game arenas with imperfect information in
the spirit of, e.g., [37, 20, 8]. Since the DEL games we define in
the next section are turn-based, i.e., the agents play in turns and not
concurrently, we define turn-based arenas instead of the more general
concurrent ones usually considered in the aforementioned works.

For the rest of the paper let us fix a countable set of atomic propo-
sitions AP and a finite set of agents Agt that is partitioned into two
antagonistic teams, Agt∃ and Agt∀.

Definition 1. A game arena G = (V, VI , Act, δ, t, (≈a)a∈Agt , λ) is
a tuple where:

• V is a non-empty set of positions,
• VI ⊆ V is the set of initial positions,
• Act is a non-empty set of actions,
• δ : V ×Act ⇀ V is a partial transition function,
• t : V → Agt is a turn function,
• ≈a⊆ V ×V is an equivalence relation called indistinguishability

relation for agent a, and
• λ : V → 2AP is a labelling or valuation function.

In a position v, agent t(v) chooses an action α such that v′ =
δ(v, α) is defined, and the game proceeds similarly from position v′.
We let Act(v) = {α | (v, α) ∈ dom(δ)}, where dom denotes the
domain, and we assume that Act(v) 6= ∅ for every position v.

A play π = v0v1v2 . . . in G is an infinite sequence of positions
such that for all i ∈ N, there exists α ∈ Act such that vi+1 =
δ(vi, α). We let πi = vi and π≤i = v0v1 . . . vi. We also let PlaysG

denote the set of plays in G. A history h = v0v1 . . . vn is a finite
nonempty prefix of a play, last(h) = vn is the last position in h and
HistG is the set of histories in G. We may write t(h), Act(h) and
λ(h) for, respectively, t(last(h)), Act(last(h)) and λ(last(h)).

The indistinguishability relation ≈a is an equivalence relation be-
tween positions of the game arena that represents how agent a ob-
serves them: v ≈a v′ means that agent a cannot distinguish between
positions v and v′. As a result, we assume that if v ≈a v′ for some
agent a, then t(v) = t(v′), which means that agents know whose
turn it is to play. In addition, if t(v) = a and v ≈a v′, we assume
that Act(v) = Act(v′), meaning that the agent who has to make a
move knows which actions are available.

We consider agents that have synchronous perfect recall, i.e. they
remember the whole sequence of observations they made, and know
how many moves have been made. To model this, each indistin-
guishability relation ≈a is lifted to histories as follows: h ≈a h′

if |h| = |h′| and for every i < |h| it holds that hi ≈a h′i.
Remark 1. Some works require in addition that actions in equivalent
histories be identical [38] or indistinguishable [33, 12]. While this
can make a difference for some strategic problems such as existence
of perfect-subgame equilibria, it does not for the distributed synthesis
problem that we consider in this work [12].

A strategy for agent a is a partial function σ : HistG ⇀ Act such
that for every h with t(h) = a, it holds that σ(h) ∈ Act(h). Be-
cause agents can only base their decisions on what they observe, their
strategies must assign the same action to indistinguishable situations:
a strategy σ for agent a is uniform if, for all histories h, h′ such that
t(h) = t(h′) = a and h ≈a h′, it holds that σ(h) = σ(h′). We say
that a play π follows a strategy σ for agent a if for every i ∈ N such
that t(π≤i) = a, it holds that πi+1 = δ(πi, σ(π≤i)). A distributed
strategy for a group of agents A ⊆ Agt is a tuple σA = (σa)a∈A,
and we write Out(σA) the set of outcomes of σA, i.e. the set of plays
that start in VI and follow each σa for a ∈ A.



A game G = (G,Win) is a game arenaGwith a winning condition
Win ⊆ PlaysG. Team Agt∃ wins a game G if there is a distributed
strategy σAgt∃ such that every play in Out(σAgt∃) is in Win.

Definition 2. Let G = (V, VI , Act, δ, t, (≈a)a∈Agt , λ) be a game
arena. We define the unfolding of G as the game arena Gunf =
(V ′, V ′I , Act, δ

′, t′, (≈′a)a∈Agt , λ
′) where V ′ = HistG, V ′I = VI ,

for every h ∈ HistG, t′(h) = t(last(h)) and λ′(h) = λ(last(h)),
≈′a is the synchronous perfect-recall lifting of ≈a to histories, and

δ′(h, α) =

{
h · v if δ(last(h), α) = v

undefined if δ(last(h), α) is undefined

The natural bijection between plays ofG and plays ofGunf induces
a winning condition Winunf over arenaGunf. Additionally, because of
the natural bijection between strategies in G and strategies in Gunf,
Agt∃ wins (G,Win) if, and only if, Agt∃ wins (Gunf,Winunf). We
say that two game structures G and G′ are equivalent whenever their
unfoldings are isomorphic4.

In this work we are interested in winning conditions expressed in
the logic of knowledge and time called LTLK (standing for linear
temporal logic with knowledge), which extends LTL with knowledge
operators for each agent.

2.2 Linear temporal logic with knowledge
The syntax of LTLK is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Kaϕ

where p ∈ AP and a ∈ Agt . The formula Xϕ reads as “at the next
step, ϕ holds”, ϕUϕ′ reads as “ϕ holds until ϕ′ holds”, and Kaϕ is
read “agent a knows that ϕ is true”.

The size |ϕ| of a formula ϕ is the number of symbols in it.
We exhibit two important syntactic fragments of LTLK: Epistemic

Logic LEL obtained by removing temporal operators X and U , i.e.,
generated by grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kaϕ,

and Propositional logic LProp obtained by also removing the knowl-
edge modality.

The logic LTLK is interpreted over a moment i ∈ N along a play
π ∈ PlaysG in a game arena G = (V,Act, δ, t, (≈a)a∈Agt , λ). We
writeG, π, i |= ϕ, and read ‘formula ϕ holds at moment i along play
π of game arena G’, defined inductively over ϕ as follows.

G, π, i |= p if p ∈ λ(πi)
G, π, i |= ¬ϕ if G, π, i 6|= ϕ

G, π, i |= ϕ1 ∨ ϕ2 if G, π, i |= ϕ1 or G, π, i |= ϕ2

G, π, i |= Xϕ if G, π, i+ 1 |= ϕ

G, π, i |= ϕ1 Uϕ2 if ∃i′ ≥ i s.t. G, π, i′ |= ϕ2 and

∀i′′ s.t. i ≤ i′′ < i′, G, π, i′′ |= ϕ1

G, π, i |= Kaϕ if ∀π′ ∈ PlaysG s.t. π′≤i ≈a π≤i,
G, π′, i |= ϕ

An LTLK formula ϕ naturally denotes a winning condition:

Winϕ = {π ∈ PlaysG | G, π, 0 |= ϕ}.
4 Some looser notion of bisimulation between games could also be considered

but isomorphism fits here.

3 DEL games
In this section we recall the definition of DEL games as recently
introduced in [25]. We start with definitions for epistemic models
and DEL event models.

3.1 The classic DEL setting
In the usual possible-worlds semantics of epistemic logic, models are
Kripke structures with interpretations for atomic propositions [16].

Definition 3. An epistemic model M = (W, (≈a)a∈Agt , λ) is a
tuple where

• W is a non-empty finite set of possible worlds (or situations),
• ≈a⊆W ×W is an indistinguishability relation for agent a, and
• λ :W → 2AP is a valuation function.

We may write w ∈ M for w ∈ W . As for games with imperfect
information introduced in the previous section, we assume that indis-
tinguishability relations ≈a are equivalence relations. The valuation
function λ defines which atomic propositions hold in a world. A pair
(M, w) where w ∈ M is called a pointed epistemic model, and we
define |M| = |W | +

∑
a∈Agt | ≈a | +

∑
w∈W |λ(w)|, the size of

M. We will only consider finite models, i.e. we assume that W is
finite and λ(w) is finite for all worlds w.

Definition 4. We defineM, w |= ϕ, read as ‘formula ϕ holds in the
pointed epistemic model (M, w)’, by induction on ϕ, as follows:

• M, w |= p if p ∈ λ(w);
• M, w |= ¬ϕ ifM, w 6|= ϕ;
• M, w |= ϕ1 ∨ ϕ2 ifM, w |= ϕ1 orM, w |= ϕ2;
• M, w |= Kaϕ if for all u such that w ≈a u,M, u |= ϕ.

Dynamic Epistemic Logic (DEL) relies on action models (also
called “event models”). These models specify how agents perceive
the occurrence of an action as well as its effects on the world.

Definition 5. An action model A = (A, (≈Aa )a∈Agt , pre, post) is a
tuple where:

• A is a non-empty finite set of possible actions,
• ≈Aa ⊆ A×A is the indistinguishability relation for agent a,
• pre : A→ LEL the precondition function, and
• post : A×AP → LProp is the postcondition function.

A pointed action model is a pair (A, α) where α represents the
actual action. We let |A| be the size ofA, which we define as |A| :=
|A|+

∑
a∈Agt | ≈

A
a |+

∑
α∈A |pre(α)|+

∑
α∈A,p∈AP |post(α, p)|.

An action α is executable in a world w of an epistemic model
M ifM, w |= pre(α), and in that case we define λupdate(w,α) :=
{p ∈ AP | M, w |= post(α, p)}, the set of atomic propositions that
hold after occurrence of action α in world w.

Types of actions An action model A is propositional if all pre-
and postconditions of actions in A belong to LProp. A public action
is a pointed action model A, α such that for each agent a, ≈Aa is the
identity relation.

The effect of the execution of an action in an epistemic model is
captured by the update product [4]:

Definition 6. LetM = (W, (≈a)a∈Agt , λ) be an epistemic model,
andA = (A, (≈Aa )a∈Agt , pre, post) be an action model. The product
ofM and A is defined asM⊗A = (W ′, (≈a)′, λ′) where:



• W ′ = {(w,α) ∈W ×A | M, w |= pre(α)},
• (w,α) ≈′a (w′, α′) if w ≈a w′ and α ≈Aa α′, and
• λ′((w,α)) = λupdate(w,α).

A

α : pre : p
post : p← ⊥ α′ : pre : >

post : ∅
b

a, b a, b

w : {p}

u : ∅

a, b

a, b

a, b

(w,α) : ∅ (w,α′) : {p}

(u, α′) : ∅

b

b

a, b

a, b

a, b

a, b

M M⊗A

Figure 1. Example of DEL product. Symbol ∅ indicates the trivial
postcondition that leaves valuations unchanged.

Example 1. Figure 1 shows the pointed modelM, w that represents
a situation in which p is true and both agents a and b do not know
it. The pointed action modelA, α describes the action where agent a
learns that p was true but that it is now set to false, while agent b does
not learn anything: indeed she considers it possible that instead of α
it was action α′ that was performed, and this action has trivial pre-
and postcondition. In the product epistemic modelM⊗A, (w,α),
agent a now knows that p is false, while b still does not know the
truth value of p, or whether agent a knows it.

3.2 Defining DEL games

We recall the definition of DEL games as introduced in [25], except
that we consider more general winning conditions.

The initial situation is described by an epistemic model M, and
the set of possible actions by an action modelA. Because the update
product in DEL can only model execution of a single action at a
time, the games that we define are turn-based. We use the variable
turn, ranging over the set of agents Agt , to represent whose turn it
is to play. We require that postconditions for variable turn do not
depend on the current epistemic situation, but instead the next value
of turn is only determined by the action that is played. When the
precondition pre(α) of some action α is satisfied, we may say that
this action is available. Without loss of generality, we assume that
there always is at least one action available.

The game thus starts in some world w ∈ M, and the agent a
such that M, w |= turn = a chooses some available action α
which is executed. The new epistemic situation M⊗ A, (w,α) is
given by the update product, and the game goes on. After n rounds,
the epistemic situation is described by a pointed epistemic model of
the formMAn, (w,α1, . . . , αn), whereMAn is defined by letting
MA0 =M andMAn+1 =MAn ⊗A. In the following we may
write wα1 . . . αn instead of (w,α1, . . . , αn), and call it a history.
Given that the modelMAn to which a history wα1 . . . αn belongs
is determined by the length of the history, we may omit it and write,
e.g., wα1 . . . αn |= ϕ instead ofMAn, wα1 . . . αn |= ϕ.

In order to obtain proper games of imperfect information, we will
require the following hypotheses to hold in the epistemic and event
models defining DEL games:

Hypotheses onM and A

(H1) The starting player is known: there is a player a such that for all
w ∈W , it holds thatM, w |= turn = a;

(H2) The turn stays known: for all actions α, α′ and agent a, if α ≈Aa
α′, then α and α′ assign the same value to turn.

(H3) Players know their available actions: if wα1 . . . αn |= turn =
a and wα1 . . . αn ≈a w′α′1 . . . α

′
n, then the same actions are

available in wα1 . . . αn and in w′α′1 . . . α′n.

We can now define DEL games.

Definition 7. A DEL game presentation (M,A, I) consists of an
initial epistemic model M and an action model A that satisfy hy-
potheses H1, H2 and H3, together with a set of initial worlds I .

We now describe how a DEL game presentation (M,A, I) in-
duces a game arena GM,A,I as per Definition 1.

Definition 8. Given a DEL game presentation (M,A, I), we define
the game arena GM,A,I = (V, VI , Act, δ, t, (≈a)a∈Agt , λ) where,
lettingMAn = (Wn, (≈na)a∈Agt , λ

n) for every n:

• V =
⋃
n∈NW

n,
• VI = I ,
• Act is the set of actions in A,
• δ(wα1 . . . αn, αn+1) ={

wα1 . . . αnαn+1 if wα1 . . . αn |= pre(αn+1)

undefined otherwise
• t(wα1 . . . αn) = a if wα1 . . . αn |= turn = a
• ≈a=

⋃
n∈N ≈

n
a for each agent a, and

• λ(wα1 . . . αn) = λn(wα1 . . . αn).

Observe that this game arena is infinite: the set of positions V is
the set of histories. In the following sections we will see that in some
cases they admit finite representations that we can use to decide the
existence of winning strategies.

A DEL game GDEL = (M,A, I,Win) consists of a DEL game
presentation (M,A, I) together with a winning condition Win ⊆
PlaysGM,A,I on the induced game arena GM,A,I . We consider the
following decision problem:

Definition 9 (Distributed strategy synthesis for LTLK objectives).
• Input: A DEL game GDEL = (M,A, I, ϕ) with ϕ ∈ LTLK;
• Question: Does team Agt∃ win the game (GM,A,I , ϕ)?

Note that the games studied in [25] correspond to the class of DEL
games where the winning condition is given by LTLK formulas of the
form Fϕ, where ϕ is purely epistemic.

Remark 2. When we evaluate whether a tuple of strategies
(σa)a∈Agt∃ is winning for an LTLK formula ϕ, the semantics of the
knowledge operators in ϕ does not depend on the strategies σa. In
particular, it is not restricted to indistinguishable histories that follow
these strategies, but instead it considers all indistinguishable histories
in the game. This semantics models situations in which agents do not
know the strategies of agents Agt∃, and it is the one also used in [25]
and in DEL epistemic planning [9, 1, 10, 11], where the agents do
not know which plan is being executed. This semantics is called un-
informed semantics in [24], contrary to the informed one. Note that
the choice of semantics affects the complexity of distributed strategy
synthesis: for instance it is known that when the game is given ex-
plicitly as a graph, the existence of distributed strategies for LTLK
on games with hierarchical information is decidable for the unin-
formed semantics [33] (and we use it to establish Theorem 3), but it



is undecidable for the informed semantics [40]. It is thus likely that
Theorem 3 would not hold for the informed semantics. We refer the
reader to [33, 23] for more discussions on the matter.

3.3 Discussion on initial positions
One subtlety that arises when formalising existence of winning
strategies under imperfect information is in defining what having a
winning strategy means. For instance, are we satisfied with the agents
in Agt∃ having a distributed strategy that is winning from the initial
position of the game, even if they do not know that it is winning, in
the sense that there is a world that some agent in Agt∃ considers like
a possible initial position and from which the distributed strategy is
not winning? Or instead do we want everybody in the team to know
that the team’s strategy is winning? These two notions have some-
times been called objective winning and subjective winning, respec-
tively (see [13] and also [20] for similar considerations). We could
also ask whether there is distributed knowledge or common knowl-
edge [16] that the distributed strategy is winning.

Note that we can model all of these notions by tuning the set of ini-
tial worlds in the definition of a DEL game, as this defines the set of
outcomes that we consider, i.e., the set of plays from which the strate-
gies should be winning. Assume we have an initial epistemic model
M with an initial world wI . If we are interested in distributed strate-
gies that are objectively winning from wI , we simply set I = {wI}
in the DEL game. If instead we want subjectively winning strategies,
i.e., strategies that not only are winning, but such that everybody in
the team Agt∃ knows that they are winning, then we let the set of
initial worlds in the DEL game be

I∃ = {w ∈M | w ≈a wI for some a ∈ Agt∃}.

Objective distributed strategy synthesis was studied in [25] for
reachability epistemic objectives, i.e., when an epistemic objective
is given as an epistemic formula ϕ ∈ LEL, and Win is defined as the
sets of plays π ∈ PlaysMA∗ for which there exists i ∈ N such that
MA∗, π≤i |= ϕ. Note that such winning conditions can be specified
by LTLK formulas Fϕ. It is shown that objective distributed strategy
synthesis is undecidable for propositional actions, already for a team
of two players and reachability epistemic objectives. Since the prob-
lem we study is more general, we inherit this undecidability result.

Theorem 1. Distributed strategy synthesis for LTLK objectives is
undecidable already for propositional actions and formulas of the
form Fϕ, where ϕ is purely epistemic.

In the rest of the paper we describe various cases in which decid-
ability can be recovered.

4 DEL games with propositional actions
Extending a result from [23, 2] in the case of DEL planning, it was
proved in [25] that in the case of propositional actions, games gen-
erated by DEL game presentations are regular, and one can compute
an equivalent finite game arena:

Proposition 1 ([25]). Given a DEL game presentation (M,A)
where A is propositional, one can construct a finite game arena G
equivalent to GM,A,I such that |G| ≤ |M|+ |A|× 2m, where m is
the number of atomic propositions inM and A.

From the latter result, if the winning condition Win is given as a
formula ϕ ∈ LTLK, then the same winning condition on G yields

a multiplayer epistemic game that is equivalent to the original DEL
game GDEL in terms of existence of distributed winning strategies.
And because such games can be decided in the case of hierarchical
information, we obtain our result.

More precisely, we say that a DEL game (M,WI ,A,Win)
presents hierarchical information if the set of agents Agt∃ can be
totally ordered (a1 < . . . < an) so that ≈ai⊆ ≈ai+1 and ≈Aai⊆
≈Aai+1

, for each 1 ≤ i < n.

Theorem 2 ([33, 24]). In multiplayer epistemic games with hier-
archical information and epistemic temporal objectives, distributed
strategy synthesis is decidable for the uninformed semantics.

Proposition 1 together with Theorem 2 imply that:

Theorem 3. Distributed strategy synthesis for LTLK objectives with
propositional actions and hierarchical information is decidable.

Remark 3. The results in [33, 24] are established for games with a
unique initial position, i.e. when VI is a singleton {vI}. However it
is easy to see that distributed synthesis with multiple initial positions
VI can be reduced to the case of a unique initial position: one only
needs to add a fresh position vI that is used as initial position, from
which one can attain all positions in VI , and only these. It does not
matter who vI belongs to or how the agents observe it.

5 DEL games with public actions
In this section, we show that when all actions are public, the dis-
tributed strategy synthesis problem is decidable for LTLK winning
conditions. Towards this end, we first prove a result similar to Propo-
sition 1: we show that given a DEL game presentation (M,A, I)
where all actions α ∈ A are public, the infinite game arena GM,A,I
is regular and can be folded back into a finite game arena. This al-
lows us to reduce the distributed strategy synthesis problem to a dis-
tributed synthesis problem on explicit game arenas, for which a solu-
tion is known in the case of public actions and LTLK objectives [40].

Note that the decidability result for reachability DEL games with
public actions in [25] does not rely on this kind of construction, but
instead is proved by providing a direct alternating algorithm. There is
a problem in the way this algorithm forces strategies to be uniform. In
the case of public actions and unique initial world considered there
it can be easily corrected, as there is in fact no need to check for
uniformity of strategies (see Remark 4). But for our more general
setting with multiple initial worlds, this approach was not sound.

Proposition 2. Given a DEL game presentation (M,A, I) where
all actions in A are public, one can compute a finite game arena G
equivalent toGM,A,I such that |G| ≤ m(2p+1)m, with p the num-
ber of atomic propositions in (M,A) and m the number of worlds
inM.

Proof. For every position wα1 . . . αn in GM,A,I we define its at-
tached epistemic modelMwα1...αn as the connected component of
MAn that containswα1 . . . αn. Since all actions inA are public, for
all positions wα1 . . . αn and wα1 . . . αnαn+1 in GM,A,I we have
thatMwα1...αn+1 is no bigger thanMwα1...αn : indeed, the appli-
cation of a public action can only remove worlds fromMwα1...αn

(those that do not satisfy the precondition) and change the valuations
of the remaining worlds. As a result there is only a finite number
of different positions wα1 . . . αn in GM,A,I , up to isomorphism of
their attached models. We write ≡ the equivalence relation on po-
sitions of GM,A,I defined by letting two positions be equivalent if



their attached models are isomorphic, and we let [wα1 . . . αn]≡ be
the equivalence class of position wα1 . . . αn for this relation.

Let us write GM,A,I = (V, VI , Act, δ, t, {≈a}a∈Agt , λ). The fi-
nite game arenaG is the quotient ofGM,A,I with≡. More precisely,
GM,A,I/≡ = (V ′, V ′I , Act

′, δ′, t′, {≈′a}a∈Agt , λ
′), where:

• V ′ = {[wα1 . . . αn]≡ | wα1 . . . αn ∈ V },
• V ′I = {[w]≡ | w ∈ VI},
• Act′ = Act,

• δ′([v]≡, α) =

{
[δ(v, α)]≡ if δ(v, α) is defined
undefined otherwise,

• [v]≡ ≈′a [v′]≡ if v ≈a v′, and
• λ′([v]≡) = λ(v).

To see that δ′ is well defined, observe that if v ≡ v′ then δ(v, α)
is defined if, and only if, so is δ(v′, α), and in this case δ(v, α) ≡
δ(v′, α). The fact that ≈′a and λ′ are well defined follows directly
from isomorphism of attached models.

To construct GM,A,I/≡, one can enumerate all possible attached
models {N1, . . . ,Nk} (modulo isomorphism) as follows: for each
world w in the original modelM, decide first whether there is some
world of the form wα1 . . . αn in N ; if there is, there is only one,
because all actions are public, and thus any position of the form
wα′1 . . . α

′
n (with for some i, α′i 6= αi) is not related to wα1 . . . αn

and thus does not appear inN . Then, one chooses the valuation over
the atomic propositions involved in the problem for each world inN .
Indistinguishability relations are inherited fromM: wα1 . . . αn ≈a
w′α1 . . . αn if, and only if, w ≈a w′. The number of such differ-
ent attached models is bounded by

∑m
i=1

(
m
i

)
2pi = (2p + 1)m, and

each one has at most m worlds. Positions [w]≡ of GM,A,I/≡ can be
represented as pairs (N , w) whereN ∈ {N1, . . . ,Nk} is one of the
representants of classes of isomorphic attached models enumerated
above, and w is a world in N . We thus have at most m(2p + 1)m

positions in V ′. It remains to build the function δ′ and relations ≈′a
as described in the definition of GM,A,I/≡.

In order to build δ′ one has to compute for each position (N , w)
and for each action α, the attached model N ⊗ A, wα, and then
identify the pointed attached model (Ni, u) in GM,A,I/≡ to which
N ⊗ A, wα is isomorphic. Since testing graph isomorphism can be
done in time 2

√
m logm for graphs with at most m vertices [3], and

all attached models have at most m worlds, the whole construction
can be done in exponential time.

Proposition 2 ensures that from a DEL game presentation (M,A)
with public actions we can construct an equivalent finite game arena
of exponential size. Moreover, in this game arena, all actions are
public in the sense of [6]. In this latter work, model checking ATL∗

with epistemic operators (ATL∗K) on game arenas with public actions
is proved in 2EXPTIME. More precisely, the proposed procedure
takes time doubly exponential in the size of the formula, but only ex-
ponential time in the size of the game structure. Combined with our
exponential construction from Theorem 2, we obtain a procedure to
solve our distributed strategy synthesis problem for public actions in
doubly exponential time, both in the size of the DEL game presenta-
tion and in the size the LTLK winning condition ϕ.

To make our argument more precise, we briefly recall the syntax
and semantics of ATL∗K. The syntax of ATL∗K is given by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kaϕ | 〈A〉ψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψ Uψ

where p ∈ AP and a ∈ Agt . Formulas of type ϕ are called his-
tory formulas, while those of type ψ are called path formulas. Note
that, in addition, the authors of [6] consider epistemic operators for
common and distributed knowledge. We omit them from the syntax
as we do not consider such operators in this work.

The semantics of ATL∗K is defined in [6] on concurrent-game struc-
tures. We instead define it on our turn-based game structures, which
can be seen as a particular case. Let us first recall the notion of public
actions for game arenas considered in [6]:

Definition 10. A game arena G = (V, VI , Act, δ, t, (≈a)a∈Agt , λ)
has only public actions if, for all v, v′ ∈ V and α, α′ ∈ Act such
that α 6= α′, we have δ(v, α) 6≈a δ(v′, α′).

The semantics of ATL∗K formulas is defined with respect to a game
arena G together with a history h in case of a history formula, or a
play π and a point in time i ∈ N in case of a path formula (we omit
boolean and temporal cases).

G, h |= p if p ∈ λ(h)

G, h |= Kaϕ if ∀h′ ∈ HistG s.t. h′ ≈a h, G, h′ |= ϕ

G, h |= 〈A〉ψ if there exists σA s.t. ∀π ∈ Out(h, σA),

G, π, |h| − 1 |= ψ

G, π, i |= ϕ if G, π≤i |= ϕ

In the above definition, Out(h, σA) is the set of plays that extend
h by following σA, which corresponds to the objective semantics
discussed in Section 3.3. Thus, it is easy to see that for an LTLK
formula ψ and a game arena G with a singleton set of initial po-
sitions VI = {vI}, it holds that Agt∃ wins (G,ϕ) if, and only if,
G, vI |= 〈Agt∃〉ψ (technically, ψ should be modified by replacing
each occurrence of knowledge modality Ka by Ka〈∅〉 in order to
have a history formula).

As explained in [6], their procedure can be adapted to the subjec-
tive semantics, i.e. when the distributed strategy σA is required to be
winning from all positions that are equivalent to vI for some agent in
A. It is not hard to see that this adaptation would also work for any
set VI of initial positions, and that it does not change the complexity
of the procedure.

Theorem 4. For public actions, distributed strategy synthesis for
LTLK objectives is 2EXPTIME-complete.

Proof. Let (M,A, I, ϕ) be a DEL game with ϕ ∈ LTLK and such
that all actions are public. By Proposition 2 we can compute in ex-
ponential time a finite game arena G = GM,A,I/≡ equivalent to
GM,A,I with |G| ≤ m(2p +1)m, where m is the number of worlds
inM and p is the number of atomic propositions in (M,A).

We show that this finite game arena G has only public actions in
the sense of Definition 10. Write G = (V,Act, δ, t, {≈a}a∈Agt , λ),
and recall that V = {[wα1 . . . αn]≡ | wα1 . . . αn ∈ GM,A,I}.
Take two positions v = [wα1 . . . αi]≡ and v′ = [w′α′1 . . . α

′
j ]≡ in

V , and α, α′ ∈ Act such that α 6= α′. By definition, δ(v, α) =
[wα1 . . . αiα]≡ and δ(v′, α′) = [w′α′1 . . . α

′
jα
′]≡. Since α and

α′ are public actions and α 6= α′, necessarily wα1 . . . αiα 6≈a
w′α′1 . . . α

′
jα
′, entailing δ(v, α) 6≈a δ(v′, α′).

We can thus use the model-checking procedure from [6] to evalu-
ate whether G satisfies 〈Agt∃〉ϕ. This procedure takes time doubly
exponential in the size of ϕ and exponential in the size ofG, which is
itself exponential in the size of the DEL game presentation (M,A),
hence the upper bound. The lower bound is obtained by reduction
from LTL synthesis, which is 2EXPTIME-complete [32].



Remark 4. We point out that in the context of public actions, the
case of a unique initial position is in fact equivalent to the perfect-
information simplification of the problem, in which the uniformity
requirement for strategies is dropped. Indeed in this case the unifor-
mity constraint is trivial to satisfy: assume there is a winning dis-
tributed strategy (σa)a∈Agt where the strategies are not necessarily
uniform. Take two histories h and h′ that are equivalent to some
agent a ∈ Agt∃. If one of them, say h′, does not start in wI , then it
does not matter how strategies (σa)a∈Agt are defined on h′, because
they are not required to be winning from worlds other than wI ; one
can thus change the definition of the strategies on h′ to make them
uniform. Otherwise, if both start in wI , because actions are public,
h = h′ so that the strategies are already uniform on these histories.

6 DEL games with public announcements
We now investigate DEL games with public announcements, which
are public actions with no effect besides epistemic ones. We assume
that the winning conditions are restricted to LTL(U)K0, the syntactic
fragment of LTLK objectives with no next modality (X) and with no
temporal operator (X or U ) under the scope of a knowledge modal-
ity (Ka). We also assume that the games are round-robin, i.e. the
turn goes from an agent to the next in a circular order, and we as-
sume a unique initial world. We show that, in this context, deciding
the existence of a winning strategy for the team Agt∃ in a DEL game
GDEL = (M,A, I, ϕ) and ϕ ∈ LTL(U)K0 is PSPACE-complete.
Because reachability goals are definable in LTL(U)K0, this result
generalises the PSPACE-completeness result established in [25].

Formally, a public announcement is a public action (A, α) such
that post(α, p) = p, for each variable p but variable turn. This
is the natural generalisation of public announcements as defined in
[30, 41]. As a consequence of the product update, either an announce-
ment is non-informative and the updated epistemic model remains
the same (modulo variable turn), or it is informative and yields an
epistemic model with strictly less worlds.

Theorem 5. In round-robin DEL games with unique initial
world and public announcements, distributed strategy synthesis for
LTL(U)K0 winning conditions is PSPACE-complete.

The rest of this section is dedicated to the proof of Theorem 5.
The problem is already PSPACE-hard for reachability goals [25],
therefore it is still PSPACE-hard for LTL(U)K0 objectives. Regard-
ing the membership in PSPACE, the two main ideas are:

1. From an initial epistemic modelM = (W, (≈a)a∈Agt , λ), there
are at most |W | informative announcements;

2. To limit the length of plays, we can shorten, as depicted in Fig-
ure 2, sequences of non-informative announcements: from a strat-
egy σ we show how to extract an eager strategy σeager that per-
forms all informative announcements eventually recommended by
σ as early as possible. Thus, any sequence of non-informative an-
nouncements followed by an informative one is of length at most
the number |Agt | of agents: if an agent wants to perform an infor-
mative event in the future, she can do so as soon as it is her turn to
play. This, in a round-robin game, happens in at most |Agt | steps.

As a result of these two points, we can search for eager strategies via
a depth-first search in GM,A,I up to depth |Agt | × |M|.

We now describe how to extract eager strategies. In the following
we call states the attached epistemic models5 in GM,A,I , writing

5 see proof of Proposition 2, page 5.

them s, s1, . . . . These are mere submodels of the initial modelM,
if we ignore variable turn. We then write sk for the sequence with k
consecutive s’s (only variable turn is changing).

Given a distributed strategy σ = (σa)a∈Agt∃ , we let the eager dis-
tributed strategy σeager = (σeager

a )a∈Agt∃ be defined by σeager
a (h) :=

σa(looka(h)) where looka(h) is a history called look ahead. This
looka(h) is, when it exists, a history that follows σ, in which it
is a’s turn to play and σa(looka(h)) is informative. Also, h is a
stuttering-equivalent subsequence of looka(h) where agents bypass
non-informative announcements and perform informative ones pre-
scribed by σ as soon as possible. There might be no such looka(h)
if agents are not eager in h. We define looka(h) by induction:

• looka(ε) := ε (base case);
• if h = h′s where h′ is a history and s is a state with either h′ = ε

or |s| < |last(h′)| (an informative announcement has been made),
looka((h

′sk)) = looka(h
′)s`, such that looka(h′)s` follows σ

and ` is

i. if it exists, the smallest integer such that turn(looka(h′)s`) =
a, and σ(looka(h′)s`) is informative at looka(h′)s`.

ii. otherwise take ` = k.

Lemma 1. Any outcome of σeager is of the form sk11 . . . sknn sω where
|s1| < |s2| < · · · < |sn| and ki < |Agt |.

As informative announcements prescribed by (σeager
a )a∈Agt∃ coin-

cide with the ones prescribed by (σa)a∈Agt∃ , the outcomes of σeager

are stuttering equivalent to some outcome of σ. Recall that two paths
are stuttering equivalent if omitting repetitions of states in both of
them yields the same sequence of states. For instance, s1s2s2s3 and
s1s1s2s3s3 are stuttering equivalent (see [22]).

Lemma 2. For any outcome of σeager, there exists a stuttering equiv-
alent outcome of σ.

We now design a polynomial space algorithm that decides whether
there exists such an eager strategy σeager

a by performing a depth-first-
search (minmax-like approach) in the unfolding of GM,A,I at poly-
nomial depth |Agt | × |M|.

w : {p}

u : ∅

b

a, b

a, b

turn a

w : {p}

u : ∅

b

a, b

a, b

turn b

w : {p}

u : ∅

b

a, b

a, b

turn a

w : {p} a, b

turn b

announce> announce> announce p

announce p

Figure 2. Strategy σeager bypasses the non-informative announcements in
σ and makes the same informative announcement (here p) but eagerly.

Every time a leaf s is reached, it is considered as the attached epis-
temic model in which the game stays forever with no more informa-
tive announcement (i.e. sω). We then evaluate the winning condition
LTL(U)K0-formula by model checking the path carried by the branch
in this tree. Now, model checking a path against LTL(U)K0 is a prob-
lem in P: because we require that no temporal operator occur under
the scope of knowledge modalities, epistemic subformulas occurring
in the challenged LTL(U)K0-formula can be evaluated locally on the
path so that these subformulas become mere propositions. It remains
to model check an LTL-formula on this marked path which can be
done in polynomial time (see for example [14, Section 6.4.3]).

Notice that while running this depth-first-search, one needs to re-
member the current branch (needed for backtracking in the minmax



algorithm) as well as the information used by the LTL(U)K0 path
model-checking procedure, which yields a poly-size information, so
that the algorithm runs in polynomial space.

We prove that this algorithm is correct. If the algorithm accepts
the input, then we have a winning strategy σeager, and we are done.

Conversely, assume there exists a winning strategy σ. Because any
LTL(U)-formula (no X operator) is stuttering-invariant (see for ex-
ample [14, Th. 6.6.5 p. 184]), and because in our logic LTL(U)K0,
epistemic subformulas are evaluated locally in states, just as propo-
sitions, the outcomes of σeager do also satisfy the winning conditions
by Lemma 2. Now because of Lemma 1 strategy σeager will be found
by the algorithm, which concludes.

7 Conclusion
We generalised the setting defined in [25] for distributed synthesis
in DEL games, moving from reachability winning conditions to ones
expressed in LTLK, and allowing for multiple initial positions, which
allows us to capture various semantics of strategic ability but also
makes the problem harder in the case of public actions.

We showed that the main results established in [25] can be lifted
to this more general setting: of course the problem remains undecid-
able, but decidability is retrieved in the case of public actions, as well
as propositional actions together with hierarchical information.

In the latter case the problem is, as usual, nonelementary, as each
agent in the team with a different observation of the game adds an
exponential to the cost of solving it [31, 26]. But for public actions
we proved that the problem is in 2EXPTIME, which is optimal as
this is already the complexity of solving LTL synthesis [32]. A cen-
tral technical result was to establish the regularity of infinite DEL
game arenas generated from public actions. We conjecture that our
techniques could extend to even more expressive winning conditions,
such as ones expressible in epistemic mu-calculus.

Regarding public announcements, we showed that the distributed
synthesis problem is PSPACE-complete for winning conditions in the
fragment LTL(U)K0, when games are round-robin and have a unique
initial world. The complexity of generalisations such as several initial
positions or winning conditions beyond LTL(U)K0 is still open.

REFERENCES
[1] G. Aucher and T. Bolander, ‘Undecidability in epistemic planning’, in

IJCAI’13, (2013).
[2] G. Aucher, B. Maubert, and S. Pinchinat, ‘Automata techniques for

epistemic protocol synthesis’, in SR’14, pp. 97–103, (2014).
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[14] Stéphane Demri, Valentin Goranko, and Martin Lange, Temporal logics
in computer science: finite-state systems, volume 58, Cambridge Uni-
versity Press, 2016.
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[29] Sophie Pinchinat and Stéphane Riedweg, ‘A decidable class of prob-
lems for control under partial observation’, IPL, 95(4), 454–460,
(2005).

[30] Jan Plaza, ‘Logics of public communications’, Synthese, 158(2), 165–
179, (2007).

[31] A. Pnueli and R. Rosner, ‘Distributed reactive systems are hard to syn-
thesize’, in FOCS’90, pp. 746–757, (1990).

[32] Amir Pnueli and Roni Rosner, ‘On the synthesis of a reactive module’,
in POPL, pp. 179–190, (1989).

[33] Bernd Puchala, ‘Asynchronous omega-regular games with partial infor-
mation’, in MFCS’10, pp. 592–603, (2010).

[34] R. Ramanujam and S. Simon, ‘A communication based model for
games of imperfect information’, in CONCUR’10, pp. 509–523,
(2010).

[35] John H. Reif, ‘The complexity of two-player games of incomplete in-
formation’, J. Comput. Syst. Sci., 29(2), 274–301, (1984).

[36] Sven Schewe and Bernd Finkbeiner, ‘Distributed synthesis for
alternating-time logics’, in ATVA’07, pp. 268–283, (2007).

[37] Pierre-Yves Schobbens, ‘Alternating-time logic with imperfect recall’,
ENTCS, 85(2), 82–93, (2004).

[38] Nikolay V Shilov, Natalya Olegovna Garanina, and K-M Choe, ‘Update
and abstraction in model checking of knowledge and branching time’,
Fundamenta Informaticae, 72(1-3), 347–361, (2006).

[39] R. van der Meyden and M.Y. Vardi, ‘Synthesis from knowledge-based
specifications’, in CONCUR’98, 34–49, Springer, (1998).

[40] R. van der Meyden and T. Wilke, ‘Synthesis of distributed systems
from knowledge-based specifications’, in CONCUR’05, pp. 562–576,
(2005).

[41] H. van Ditmarsch, W. van der Hoek, and B. Kooi, Dynamic Epistemic
Logic, Springer, Dordecht, 2008.


